cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 46 results. Next

A238780 Number of palindromic partitions of n whose greatest part has multiplicity 4.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 2, 5, 4, 7, 5, 10, 8, 14, 11, 20, 16, 26, 21, 37, 31, 48, 40, 65, 55, 85, 72, 113, 97, 145, 125, 190, 165, 242, 211, 313, 274, 396, 348, 505, 446, 633, 561, 801, 713, 998, 890, 1249, 1118, 1548, 1389, 1922, 1730
Offset: 0

Views

Author

Clark Kimberling, Mar 05 2014

Keywords

Comments

Palindromic partitions are defined at A025065.

Examples

			a(8) counts these partitions (written as palindromes):  3333, 11222211.
		

Crossrefs

Programs

  • Mathematica
    z = 40; p[n_, k_] := Select[IntegerPartitions[n], (Count[OddQ[Transpose[Tally[#]][[2]]], True] <= 1) && (Count[#, Max[#]] == k) &]
    Table[p[n, 1], {n, 1, 12}]
    t1 = Table[Length[p[n, 1]], {n, 1, z}] (* A000009(n-1), n>=1 *)
    Table[p[n, 2], {n, 1, 12}]
    t2 = Table[Length[p[n, 2]], {n, 1, z}] (* A238779 *)
    Table[p[n, 3], {n, 1, 12}]
    t3 = Table[Length[p[n, 3]], {n, 1, z}] (* A087897(n-3), n>=3 *)
    Table[p[n, 4], {n, 1, 12}]
    t4 = Table[Length[p[n, 4]], {n, 1, z}] (* A238780 *)
    (* Peter J. C. Moses, Mar 03 2014 *)

A266138 Expansion of Product_{k>=1} 1/(1 - k*(x^(2*k+1))).

Original entry on oeis.org

1, 0, 0, 1, 0, 2, 1, 3, 2, 5, 7, 7, 11, 13, 24, 26, 35, 44, 69, 78, 112, 150, 188, 245, 318, 429, 537, 729, 924, 1177, 1534, 1965, 2518, 3287, 4108, 5394, 6857, 8604, 11022, 14073, 17899, 22549, 28900, 36182, 45954, 58395, 72912, 92118, 116201, 146279
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 21 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=80; CoefficientList[Series[Product[1/(1-k*(x^(2*k+1))), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 3^(n/7), where
c = 617630.638335... if mod(n,7) = 0
c = 617630.321433... if mod(n,7) = 1
c = 617630.360795... if mod(n,7) = 2
c = 617630.429073... if mod(n,7) = 3
c = 617630.357078... if mod(n,7) = 4
c = 617630.421636... if mod(n,7) = 5
c = 617630.341606... if mod(n,7) = 6.

A277210 Expansion of Product_{k>=1} 1/(1 - x^(3*k+1)).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 4, 3, 3, 4, 5, 4, 6, 6, 7, 7, 9, 8, 11, 11, 12, 13, 16, 15, 18, 20, 22, 22, 27, 27, 31, 33, 37, 38, 45, 46, 51, 55, 62, 63, 72, 76, 84, 89, 99, 103, 116, 122, 133, 142, 158, 164, 181, 193, 210, 222, 245, 257, 281, 299, 324, 343, 376, 396, 429, 457, 495, 522, 568, 601, 649, 689
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 05 2016

Keywords

Comments

Number of partitions of n into parts larger than 1 and congruent to 1 mod 3.
More generally, the ordinary generating function for the number of partitions of n into parts larger than 1 and congruent to 1 mod m (for m>0) is Product_{k>=1} 1/(1 - x^(m*k+1)).

Examples

			a(14) = 2, because we have [10, 4] and [7, 7].
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - x)/QPochhammer[x, x^3], {x, 0, 85}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^(3*k+1)).
a(n) ~ Pi^(1/3) * Gamma(1/3) * exp(sqrt(2*n)*Pi/3) / (2^(13/6)*3^(3/2)*n^(7/6)). - Vaclav Kotesovec, Oct 06 2016

A323089 Number of strict integer partitions of n using 1 and numbers that are not perfect powers.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 3, 4, 4, 5, 6, 7, 9, 10, 12, 14, 16, 20, 22, 26, 31, 34, 40, 46, 51, 59, 66, 75, 86, 96, 110, 123, 139, 157, 176, 199, 221, 248, 278, 309, 346, 385, 427, 476, 528, 586, 650, 719, 795, 880, 973, 1074, 1186, 1307, 1439, 1584, 1744, 1915, 2104
Offset: 0

Views

Author

Gus Wiseman, Jan 04 2019

Keywords

Examples

			A list of all strict integer partitions using 1 and numbers that are not perfect powers begins:
  1: (1)         8: (5,2,1)      12: (12)         14: (14)
  2: (2)         9: (7,2)        12: (11,1)       14: (13,1)
  3: (3)         9: (6,3)        12: (10,2)       14: (12,2)
  3: (2,1)       9: (6,2,1)      12: (7,5)        14: (11,3)
  4: (3,1)       9: (5,3,1)      12: (7,3,2)      14: (11,2,1)
  5: (5)        10: (10)         12: (6,5,1)      14: (10,3,1)
  5: (3,2)      10: (7,3)        12: (6,3,2,1)    14: (7,6,1)
  6: (6)        10: (7,2,1)      13: (13)         14: (7,5,2)
  6: (5,1)      10: (6,3,1)      13: (12,1)       14: (6,5,3)
  6: (3,2,1)    10: (5,3,2)      13: (11,2)       14: (6,5,2,1)
  7: (7)        11: (11)         13: (10,3)       15: (15)
  7: (6,1)      11: (10,1)       13: (10,2,1)     15: (14,1)
  7: (5,2)      11: (7,3,1)      13: (7,6)        15: (13,2)
  8: (7,1)      11: (6,5)        13: (7,5,1)      15: (12,3)
  8: (6,2)      11: (6,3,2)      13: (7,3,2,1)    15: (12,2,1)
  8: (5,3)      11: (5,3,2,1)    13: (6,5,2)      15: (11,3,1)
		

Crossrefs

Programs

  • Mathematica
    perpowQ[n_]:=GCD@@FactorInteger[n][[All,2]]>1;
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&And@@Not/@perpowQ/@#&]],{n,65}]

Formula

O.g.f.: (1 + x) * Product_{n in A007916} (1 + x^n).

A334305 a(n) is the number of partitions of n of the form [k,k,b(1),b(2),...], where k>=b(1)>b(2)>...>=2.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 2, 0, 2, 1, 2, 2, 3, 2, 4, 4, 4, 6, 6, 7, 8, 10, 10, 13, 14, 16, 18, 22, 22, 28, 30, 34, 39, 44, 48, 56, 62, 69, 78, 88, 96, 110, 122, 134, 152, 168, 186, 208, 231, 254, 284, 314, 346, 384, 425, 466, 518, 570, 626, 692, 762, 834, 922, 1010
Offset: 0

Views

Author

Victor Mishnyakov, Elena Lanina, Apr 22 2020

Keywords

Comments

a(n)>0 if n>=2k>=4.

Examples

			a(4)=1 because we have [2,2]; a(6)=2 because we have [2,2,2] and [3,3].
G.f.= x^4+2x^6+2x^8+x^9+2x^10+2x^11+3x^12+2x^13+...
		

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(2 k) Product[(1 + x^i), {i, 2, k}], {k, 2, nmax/2}], {x, 0, nmax}], x]
    Flatten[{{0, 0, 0}, Table[PartitionsQ[n + 3] - 2*(-1)^n + 2*Sum[(-1)^k * PartitionsQ[n - k + 3], {k, 1, n - 2}], {n, 3, 70}]}] (* Vaclav Kotesovec, Apr 24 2020 *)

Formula

G.f.: Sum_{k>=2} x^(2k) Product_{i=2..k} (1+x^i).
From Vaclav Kotesovec, Apr 24 2020: (Start)
For n>=3, a(n) + a(n+1) = A087897(n+4).
a(n) ~ exp(Pi*sqrt(n/3)) * Pi / (16 * 3^(3/4) * n^(5/4)). (End)

A239302 Triangular array: T(n,k) = number of partitions x(1) > x(2) > ... > x(k) of n+2 such that x(1) = x(2) + k, for n >= 1.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1, 0, 1, 2, 2, 1, 1, 1, 1, 0, 1, 2, 2, 2, 1, 1, 1, 1, 0, 1, 3, 2, 2, 2, 1, 1, 1, 1, 0, 1, 3, 3, 2, 2, 2, 1, 1, 1, 1, 0, 1, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 0, 1, 5, 4, 3, 3, 2, 2, 2, 1
Offset: 1

Views

Author

Clark Kimberling, Mar 14 2014

Keywords

Comments

The columns are identical, and the limit of the reversal of rows is A087897(n+3).
Sum of row n equals A111133(n+3).

Examples

			First 17 rows:
1
0 1
1 0 1
1 1 0 1
1 1 1 0 1
1 1 1 1 0 1
2 1 1 1 1 0 1
2 2 1 1 1 1 0 1
2 2 2 1 1 1 1 0 1
3 2 2 2 1 1 1 1 0 1
3 3 2 2 2 1 1 1 1 0 1
4 3 3 2 2 2 1 1 1 1 0 1
5 4 3 3 2 2 2 1 1 1 1 0 1
5 5 4 3 3 2 2 2 1 1 1 1 0 1
6 5 5 4 3 3 2 2 2 1 1 1 1 0 1
8 6 5 5 4 3 3 2 2 2 1 1 1 1 0 1
8 8 6 5 5 4 3 3 2 2 2 1 1 1 1 0 1
To account for row 7, start with the strict partitions (A000009) of 9 that have more than one part:  81, 72, 63, 621, 54, 531, 432.  Next, form (part 1) - (part 2) for each of those partitions, getting 7, 5, 3, 4, 1, 2, 1; finally, note that the numbers of occurrences of 1,2,3,4,5,6,7, respectively, are 2,1,1,1,1,0,1.
		

Crossrefs

Programs

  • Mathematica
    z = 25; d[n_] := d[n] = Rest[Select[IntegerPartitions[n], DeleteDuplicates[#] == # &]]; t[n_] := t[n] = Table[d[n][[k, 1]] - d[n][[k, 2]], {k, 1, -1 + PartitionsQ[n]}]; u = Table[Count[t[n], j], {n, 3, z}, {j, 1, n - 2}]; TableForm[u] (* A239302 as an array *)
    v = Flatten[u]  (* A239302 as a sequence *)

A277264 Expansion of Product_{k>=1} 1/(1 - x^(5*k+1)).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 2, 1, 1, 0, 1, 2, 2, 1, 1, 1, 3, 3, 2, 1, 2, 3, 4, 3, 2, 2, 5, 5, 5, 3, 3, 5, 8, 6, 5, 4, 7, 9, 10, 7, 6, 8, 12, 12, 11, 8, 11, 15, 17, 14, 13, 13, 19, 21, 20, 16, 19, 23, 28, 26, 23, 23, 31, 34, 35, 30, 31, 37, 46, 44, 41, 39, 48, 55, 59, 52, 52, 59, 71, 73, 71, 65, 75, 87, 94
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 07 2016

Keywords

Comments

Number of partitions of n into parts larger than 1 and congruent to 1 mod 5.

Examples

			a(22) = 2, because we have [16, 6] and [11, 11].
		

Crossrefs

Cf. A016861, A087897, A109697 (partial sums), A117957, A277210.

Programs

  • Mathematica
    CoefficientList[Series[(1 - x)/QPochhammer[x, x^5], {x, 0, 100}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^(5*k+1)).
a(n) ~ Pi^(1/5) * Gamma(1/5) * exp(Pi*sqrt(2*n/15)) / (2^(21/10) * 3^(3/5) * 5^(9/10) * n^(11/10)). - Vaclav Kotesovec, Oct 09 2016

A277349 Expansion of Product_{k>=1} 1/(1 - x^(6*k+1)).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 2, 1, 1, 0, 0, 1, 2, 2, 1, 1, 0, 1, 3, 3, 2, 1, 1, 1, 3, 4, 3, 2, 1, 2, 4, 5, 5, 3, 2, 2, 5, 7, 6, 5, 3, 3, 6, 9, 9, 7, 5, 4, 7, 11, 12, 10, 7, 6, 9, 14, 16, 14, 11, 8, 11, 17, 20, 19, 15, 12, 14, 21, 26, 25, 21, 17, 18, 26, 32, 33, 28, 23, 24, 32, 41
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 10 2016

Keywords

Comments

Number of partitions of n into parts larger than 1 and congruent to 1 mod 6.

Examples

			a(26) = 2, because we have [19, 7] and [13, 13].
		

Crossrefs

Cf. A016921, A087897, A109701 (partial sums), A117957, A277210, A277264.

Programs

  • Maple
    N:= 100:
    G:= 1/mul(1-x^m,m=7..N,6):
    S:= series(G,x,N+1):
    seq(coeff(S,x,j),j=0..N); # Robert Israel, Jan 23 2019
  • Mathematica
    CoefficientList[Series[(1 - x)/QPochhammer[x, x^6], {x, 0, 100}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^(6*k+1)).
a(n) ~ Pi^(1/6) * Gamma(1/6) * exp(sqrt(n)*Pi/3) / (24*sqrt(3)*n^(13/12)). - Vaclav Kotesovec, Oct 10 2016

A303903 Expansion of (1 - x^2)*Product_{k>=3} (1 + x^Fibonacci(k)).

Original entry on oeis.org

1, 0, 0, 1, -1, 1, 0, -1, 2, -1, 0, 1, -2, 2, 0, -1, 2, -2, 1, 0, -2, 3, -1, 0, 2, -3, 2, 0, -2, 3, -2, 0, 1, -3, 3, 0, -1, 3, -3, 2, 0, -3, 4, -2, 0, 2, -4, 3, 0, -2, 3, -3, 1, 0, -3, 4, -1, 0, 3, -4, 3, 0, -3, 5, -3, 0, 2, -5, 4, 0, -2, 4, -4, 2, 0, -4, 5, -2, 0, 3, -5, 3, 0, -3, 4, -3
Offset: 0

Views

Author

Ilya Gutkovskiy, May 02 2018

Keywords

Comments

First differences of A000119.

Crossrefs

Programs

  • Mathematica
    nmax = 85; CoefficientList[Series[(1 - x^2) Product[1 + x^Fibonacci[k], {k, 3, 21}], {x, 0, nmax}], x]

A341449 Heinz numbers of integer partitions into odd parts > 1.

Original entry on oeis.org

1, 5, 11, 17, 23, 25, 31, 41, 47, 55, 59, 67, 73, 83, 85, 97, 103, 109, 115, 121, 125, 127, 137, 149, 155, 157, 167, 179, 187, 191, 197, 205, 211, 227, 233, 235, 241, 253, 257, 269, 275, 277, 283, 289, 295, 307, 313, 331, 335, 341, 347, 353, 365, 367, 379, 389
Offset: 1

Views

Author

Gus Wiseman, Feb 15 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of partitions together with their Heinz numbers begins:
      1: ()        97: (25)       197: (45)       307: (63)
      5: (3)      103: (27)       205: (13,3)     313: (65)
     11: (5)      109: (29)       211: (47)       331: (67)
     17: (7)      115: (9,3)      227: (49)       335: (19,3)
     23: (9)      121: (5,5)      233: (51)       341: (11,5)
     25: (3,3)    125: (3,3,3)    235: (15,3)     347: (69)
     31: (11)     127: (31)       241: (53)       353: (71)
     41: (13)     137: (33)       253: (9,5)      365: (21,3)
     47: (15)     149: (35)       257: (55)       367: (73)
     55: (5,3)    155: (11,3)     269: (57)       379: (75)
     59: (17)     157: (37)       275: (5,3,3)    389: (77)
     67: (19)     167: (39)       277: (59)       391: (9,7)
     73: (21)     179: (41)       283: (61)       401: (79)
     83: (23)     187: (7,5)      289: (7,7)      415: (23,3)
     85: (7,3)    191: (43)       295: (17,3)     419: (81)
		

Crossrefs

Note: A-numbers of ranking sequences are in parentheses below.
Partitions with no ones are A002865 (A005408).
The case of even parts is A035363 (A066207).
These partitions are counted by A087897.
The version for factorizations is A340101.
A000009 counts partitions into odd parts (A066208).
A001222 counts prime factors.
A027193 counts partitions of odd length/maximum (A026424/A244991).
A056239 adds up prime indices.
A078408 counts partitions with odd parts, length, and sum (A300272).
A112798 lists the prime indices of each positive integer.
A257991/A257992 count odd/even prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],OddQ[#]&&OddQ[Times@@primeMS[#]]&]
Previous Showing 31-40 of 46 results. Next