cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A101395 Numbers k such that 4*10^k+7 is prime.

Original entry on oeis.org

0, 1, 3, 9, 39, 2323
Offset: 1

Views

Author

Julien Peter Benney (jpbenney(AT)ftml.net), Jan 15 2005

Keywords

Comments

No further terms < 50000.
a(7) > 2*10^5. - Robert Price May 16 2015

Examples

			n = 1, 3, 9 are members since 47, 4007 and 4000000007 are primes.
		

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[4*10^n + 7], Print[n]], {n, 0, 10000}]
  • PARI
    is(n)=ispseudoprime(4*10^n+7) \\ Charles R Greathouse IV, Jun 12 2017

Formula

a(n) = A101714(n-1) + 1.

A102007 Indices of primes in sequence defined by A(0) = 17, A(n) = 10*A(n-1) - 63 for n > 0.

Original entry on oeis.org

0, 1, 3, 7, 8, 23, 59, 109, 133, 221, 411, 699, 998, 1382, 5075, 5542, 6343, 14599, 15092, 21716, 23635, 30220, 50710, 221627, 350070, 371695, 487290, 995255
Offset: 1

Views

Author

Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 28 2004

Keywords

Comments

Numbers n such that 10*10^n + 7 is prime.
Numbers n such that digit 1 followed by n >= 0 occurrences of digit 0 followed by digit 7 is prime.
Numbers corresponding to terms <= 998 are certified primes.
a(24) > 2*10^5. - Robert Price, Nov 09 2015

Examples

			10007 is prime, hence 3 is a term.
		

References

  • Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.

Crossrefs

Programs

  • Mathematica
    Select[Range[0, 100000], PrimeQ[10*10^# + 7] &] (* Robert Price, Nov 09 2015 *)
  • PARI
    a=17;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a-63)
    
  • PARI
    for(n=0,1500,if(isprime(10*10^n+7),print1(n,",")))

Formula

a(n) = A088274(n) - 1.

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
a(24)-a(28) added from A088274 by Amiram Eldar, Nov 28 2021

A107084 Integers k such that 10^k + 33 is prime.

Original entry on oeis.org

1, 3, 6, 9, 10, 31, 47, 70, 281, 366, 519, 532, 775, 1566, 1627, 2247, 2653, 4381, 4571, 7513, 10581, 13239, 15393, 72267, 105515, 215802
Offset: 1

Views

Author

Julien Peter Benney (jpbenney(AT)ftml.net), Jun 08 2005

Keywords

Comments

The next term, if it exists, is > 39546. - Robert Price, Aug 21 2010
See Kamada link - primecount.txt for terms, primesize.txt for discovery details including probable or proved primes - search on "10033".
a(26) > 3*10^5. - Robert Price, Oct 26 2023

Examples

			For k = 3 we get 10^3 + 33 = 1000 + 33 = 1033, which is prime, so 3 is a term.
		

Crossrefs

Extensions

a(20)-a(23) from Robert Price, Aug 21 2010
Edited by Ray Chandler, Dec 23 2010
a(24) from Robert Price, Jan 29 2011
a(26) from Robert Price, Oct 26 2023
a(25) from Kamada data by Tyler Busby, Apr 16 2024

A111021 Integers k such that 7*10^k + 31 is a prime number.

Original entry on oeis.org

1, 8, 11, 143, 203, 2727, 2911, 3339, 17039
Offset: 1

Views

Author

Julien Peter Benney (jpbenney(AT)ftml.net), Oct 04 2005

Keywords

Comments

See Kamada link - primecount.txt for terms, primesize.txt for discovery details including probable or proved primes - search on "70031".
a(10) > 10^5. - Robert Price, Jan 28 2017

Examples

			k = 11 is a term because 7*10^11 + 31 = 7*100000000000 + 31 = 700000000000 + 31 = 700000000031, which is a prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..300] | IsPrime(7*10^n+31)]; // Vincenzo Librandi, Jul 03 2016
  • Mathematica
    Select[Range[0, 10000], PrimeQ[7 10^# + 31] &] (* Vincenzo Librandi, Jul 03 2016 *)

Extensions

a(9) from Ray Chandler, Dec 23 2010
a(1) = 1 prepended by Vincenzo Librandi, Jul 03 2016

A258932 Numbers k such that 10^k + 103 is prime.

Original entry on oeis.org

1, 3, 4, 5, 7, 9, 10, 11, 27, 35, 85, 169, 209, 221, 321, 347, 603, 610, 1229, 1391, 2171, 2303, 2679, 3977, 4545, 5721, 7090, 35877
Offset: 1

Views

Author

Vincenzo Librandi, Jun 15 2015

Keywords

Comments

a(29) > 60000. - Michael S. Branicky, Apr 27 2025

Examples

			For n = 3, a(3) = 10^3 + 103 = 1103, which is prime.
		

Crossrefs

Sequences of the type 10^n+k: A049054 (k=3), A088274 (k=7), A088275 (k=9), A095688 (k=13), A108052 (k=19), A108050 (k=21), A108312 (k=27), A107083 (k=31), A107084 (k=33), A135109 (k=37), A135108 (k=39), A108049 (k=43), A108054 (k=49), A135118 (k=51), A135119 (k=57), A135116 (k=61), A135115 (k=63), A135113 (k=67), A135114 (k=69), A135132 (k=73), A135131 (k=79), A137848 (k=81), A135117 (k=87), A110918 (k=91), A135112 (k=93), A135107 (k=97), A110980 (k=99), this sequence (k=103), A258933 (k=109), A165508 (k=111), A248349 (k=123456789), A248351 (k=987654321).

Programs

  • Magma
    [n: n in [1..600] | IsPrime(10^n+103)];
    
  • Mathematica
    Select[Range[5000], PrimeQ[10^# + 103] &]
  • PARI
    is(n)=ispseudoprime(10^n+103) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(26)-a(28) from Jens Kruse Andersen, Jun 23 2015

A110920 Integers n such that 2*10^n + 81 is a prime number.

Original entry on oeis.org

0, 1, 2, 3, 6, 7, 8, 15, 36, 38, 51, 168, 1000, 2955, 8151, 16456, 17902, 18784, 24948, 28731, 87144
Offset: 1

Views

Author

Julien Peter Benney (jpbenney(AT)ftml.net), Oct 04 2005

Keywords

Comments

See Kamada link - primecount.txt for terms, primesize.txt for discovery details including probable or proved primes - search on "20081".
a(22) > 10^5. - Robert Price, Jan 19 2017

Examples

			n = 3 is a term because 2*10^3 + 81 = 2*1000 + 81 = 2000 + 81 = 2081 and 2081 is prime.
		

Crossrefs

Extensions

a(15)-a(18) from Kamada link by Ray Chandler, Dec 23 2010
a(1)-a(2) prepended by Robert Price, Jan 19 2017
a(19)-a(21) from Robert Price, Jan 19 2017

A110933 Integers k such that 3*10^k + 71 is a prime number.

Original entry on oeis.org

1, 4, 7, 16, 19, 190, 227, 235, 283, 319, 1655, 3955, 10666, 30724
Offset: 1

Views

Author

Julien Peter Benney (jpbenney(AT)ftml.net), Oct 04 2005

Keywords

Comments

See Kamada link - primecount.txt for terms, primesize.txt for discovery details including probable or proved primes - search on "30071".
a(15) > 10^5. - Robert Price, Jan 22 2017

Examples

			k = 7 is a member because: 3*10^7 + 71 = 30000071, which is prime.
		

Crossrefs

Programs

  • PARI
    isok(n) = isprime(3*10^n+71); \\ Michel Marcus, Jan 22 2017

Extensions

a(13) from Ray Chandler, Dec 23 2010
Prepended a(1)=1 by Robert Price, Jan 22 2017
a(14) from Robert Price, Jan 22 2017

A110949 Integers n such that 4*10^n + 61 is prime.

Original entry on oeis.org

1, 2, 7, 11, 191, 248, 1067, 2666, 5252, 13400, 22886, 23739, 29095
Offset: 1

Views

Author

Julien Peter Benney (jpbenney(AT)ftml.net), Oct 04 2005

Keywords

Comments

See Kamada link - primecount.txt for terms, primesize.txt for discovery details including probable or proved primes - search on "40061".
a(14) > 10^5. - Robert Price, Jan 22 2017

Examples

			n = 7 is in the sequence because 4*10^7 + 61 = 4*10000000 + 61 = 40000000 + 61 = 40000061, which is prime.
		

Crossrefs

Programs

  • PARI
    isok(n) = isprime(4*10^n+61); \\ Michel Marcus, Jan 22 2017

Extensions

a(9)-a(11) from Ray Chandler, Dec 23 2010
Prepended a(1)=1 by Robert Price, Jan 22 2017
a(12)-a(13) from Robert Price, Jan 22 2017

A110983 Integers k such that 5*10^k + 51 is prime.

Original entry on oeis.org

1, 3, 4, 16, 430, 727, 1415, 2691, 3160, 3904, 5464, 19875, 65255, 68524
Offset: 1

Views

Author

Julien Peter Benney (jpbenney(AT)ftml.net), Oct 04 2005

Keywords

Comments

See Kamada link - primecount.txt for terms, primesize.txt for discovery details including probable or proved primes - search on "50051".
a(15) > 10^5. - Robert Price, Jan 28 2017

Examples

			k = 4 is a member because: 5*10^4+51 = 5*10000+51 = 50000+51 = 50051, which is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 1000], PrimeQ[5*10^# + 51] &] (* Julien Kluge, Dec 15 2016 *)

Extensions

a(11)-a(12) from Ray Chandler, Dec 23 2010
Prepended a(1)=1 by Robert Price, Jan 28 2017
a(13)-a(14) from Robert Price, Jan 28 2017

A110995 Integers k such that 6*10^k + 41 is a prime number.

Original entry on oeis.org

0, 1, 2, 4, 6, 8, 50, 54, 102, 134, 212, 872, 3055, 3427, 3528, 4262, 4414, 6084, 93792
Offset: 1

Views

Author

Julien Peter Benney (jpbenney(AT)ftml.net), Oct 04 2005

Keywords

Comments

See Kamada link - primecount.txt for terms, primesize.txt for discovery details including probable or proved primes - search on "60041".
a(20) > 10^5. - Robert Price, Jan 19 2017

Examples

			k = 4 is a term because 6*10^4 + 41 = 6*10000 + 41 = 60000 + 41 = 60041, which is a prime number.
		

Crossrefs

Extensions

a(18) from Ray Chandler, Dec 23 2010
a(1)-a(2) prepended by Robert Price, Jan 19 2017
a(19) from Robert Price, Jan 19 2017
Previous Showing 11-20 of 23 results. Next