A101395
Numbers k such that 4*10^k+7 is prime.
Original entry on oeis.org
0, 1, 3, 9, 39, 2323
Offset: 1
Julien Peter Benney (jpbenney(AT)ftml.net), Jan 15 2005
n = 1, 3, 9 are members since 47, 4007 and 4000000007 are primes.
-
Do[ If[ PrimeQ[4*10^n + 7], Print[n]], {n, 0, 10000}]
-
is(n)=ispseudoprime(4*10^n+7) \\ Charles R Greathouse IV, Jun 12 2017
A102007
Indices of primes in sequence defined by A(0) = 17, A(n) = 10*A(n-1) - 63 for n > 0.
Original entry on oeis.org
0, 1, 3, 7, 8, 23, 59, 109, 133, 221, 411, 699, 998, 1382, 5075, 5542, 6343, 14599, 15092, 21716, 23635, 30220, 50710, 221627, 350070, 371695, 487290, 995255
Offset: 1
Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 28 2004
10007 is prime, hence 3 is a term.
- Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
-
Select[Range[0, 100000], PrimeQ[10*10^# + 7] &] (* Robert Price, Nov 09 2015 *)
-
a=17;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a-63)
-
for(n=0,1500,if(isprime(10*10^n+7),print1(n,",")))
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
A107084
Integers k such that 10^k + 33 is prime.
Original entry on oeis.org
1, 3, 6, 9, 10, 31, 47, 70, 281, 366, 519, 532, 775, 1566, 1627, 2247, 2653, 4381, 4571, 7513, 10581, 13239, 15393, 72267, 105515, 215802
Offset: 1
Julien Peter Benney (jpbenney(AT)ftml.net), Jun 08 2005
For k = 3 we get 10^3 + 33 = 1000 + 33 = 1033, which is prime, so 3 is a term.
A111021
Integers k such that 7*10^k + 31 is a prime number.
Original entry on oeis.org
1, 8, 11, 143, 203, 2727, 2911, 3339, 17039
Offset: 1
Julien Peter Benney (jpbenney(AT)ftml.net), Oct 04 2005
k = 11 is a term because 7*10^11 + 31 = 7*100000000000 + 31 = 700000000000 + 31 = 700000000031, which is a prime.
A258932
Numbers k such that 10^k + 103 is prime.
Original entry on oeis.org
1, 3, 4, 5, 7, 9, 10, 11, 27, 35, 85, 169, 209, 221, 321, 347, 603, 610, 1229, 1391, 2171, 2303, 2679, 3977, 4545, 5721, 7090, 35877
Offset: 1
For n = 3, a(3) = 10^3 + 103 = 1103, which is prime.
Sequences of the type 10^n+k:
A049054 (k=3),
A088274 (k=7),
A088275 (k=9),
A095688 (k=13),
A108052 (k=19),
A108050 (k=21),
A108312 (k=27),
A107083 (k=31),
A107084 (k=33),
A135109 (k=37),
A135108 (k=39),
A108049 (k=43),
A108054 (k=49),
A135118 (k=51),
A135119 (k=57),
A135116 (k=61),
A135115 (k=63),
A135113 (k=67),
A135114 (k=69),
A135132 (k=73),
A135131 (k=79),
A137848 (k=81),
A135117 (k=87),
A110918 (k=91),
A135112 (k=93),
A135107 (k=97),
A110980 (k=99), this sequence (k=103),
A258933 (k=109),
A165508 (k=111),
A248349 (k=123456789),
A248351 (k=987654321).
-
[n: n in [1..600] | IsPrime(10^n+103)];
-
Select[Range[5000], PrimeQ[10^# + 103] &]
-
is(n)=ispseudoprime(10^n+103) \\ Charles R Greathouse IV, Jun 13 2017
A110920
Integers n such that 2*10^n + 81 is a prime number.
Original entry on oeis.org
0, 1, 2, 3, 6, 7, 8, 15, 36, 38, 51, 168, 1000, 2955, 8151, 16456, 17902, 18784, 24948, 28731, 87144
Offset: 1
Julien Peter Benney (jpbenney(AT)ftml.net), Oct 04 2005
n = 3 is a term because 2*10^3 + 81 = 2*1000 + 81 = 2000 + 81 = 2081 and 2081 is prime.
A110933
Integers k such that 3*10^k + 71 is a prime number.
Original entry on oeis.org
1, 4, 7, 16, 19, 190, 227, 235, 283, 319, 1655, 3955, 10666, 30724
Offset: 1
Julien Peter Benney (jpbenney(AT)ftml.net), Oct 04 2005
k = 7 is a member because: 3*10^7 + 71 = 30000071, which is prime.
A110949
Integers n such that 4*10^n + 61 is prime.
Original entry on oeis.org
1, 2, 7, 11, 191, 248, 1067, 2666, 5252, 13400, 22886, 23739, 29095
Offset: 1
Julien Peter Benney (jpbenney(AT)ftml.net), Oct 04 2005
n = 7 is in the sequence because 4*10^7 + 61 = 4*10000000 + 61 = 40000000 + 61 = 40000061, which is prime.
A110983
Integers k such that 5*10^k + 51 is prime.
Original entry on oeis.org
1, 3, 4, 16, 430, 727, 1415, 2691, 3160, 3904, 5464, 19875, 65255, 68524
Offset: 1
Julien Peter Benney (jpbenney(AT)ftml.net), Oct 04 2005
k = 4 is a member because: 5*10^4+51 = 5*10000+51 = 50000+51 = 50051, which is prime.
A110995
Integers k such that 6*10^k + 41 is a prime number.
Original entry on oeis.org
0, 1, 2, 4, 6, 8, 50, 54, 102, 134, 212, 872, 3055, 3427, 3528, 4262, 4414, 6084, 93792
Offset: 1
Julien Peter Benney (jpbenney(AT)ftml.net), Oct 04 2005
k = 4 is a term because 6*10^4 + 41 = 6*10000 + 41 = 60000 + 41 = 60041, which is a prime number.
Comments