A052623
E.g.f. x(1-x)^2/(1-3x+x^2).
Original entry on oeis.org
0, 1, 2, 18, 192, 2520, 39600, 725760, 15200640, 358162560, 9376819200, 270037152000, 8483597337600, 288734500454400, 10582834303641600, 415593298568448000, 17408598098411520000, 774797125808369664000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{S=Prod(Z,Sequence(Prod(Z,Sequence(Z),Sequence(Z))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
With[{nn=20},CoefficientList[Series[x (1-x)^2/(1-3x+x^2),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, May 30 2021 *)
A305049
Expansion of 1/(1 - Sum_{k>=1} tau_k(k)*x^k), where tau_k(k) = number of ordered k-factorizations of k (A163767).
Original entry on oeis.org
1, 1, 3, 8, 27, 67, 216, 569, 1747, 4812, 14041, 39483, 115408, 326385, 941735, 2684170, 7725097, 22063737, 63354066, 181223899, 519883185, 1488316952, 4266788191, 12219763777, 35023995792, 100326757107, 287503501905, 823654031283, 2360146144917, 6761847714698, 19374935267810
Offset: 0
-
A:= proc(n, k) option remember; `if`(k=1, 1,
add(A(d, k-1), d=numtheory[divisors](n)))
end:
a:= proc(n) option remember; `if`(n=0, 1,
add(A(j$2)*a(n-j), j=1..n))
end:
seq(a(n), n=0..35); # Alois P. Heinz, May 24 2018
-
nmax = 30; CoefficientList[Series[1/(1 - Sum[Times @@ (Binomial[# + k - 1, k - 1] & /@ FactorInteger[k][[All, 2]]) x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[Times @@ (Binomial[# + k - 1, k - 1] & /@ FactorInteger[k][[All, 2]]) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 30}]
A308446
Expansion of Product_{k>=1} 1/(1 - x^k)^Fibonacci(2*k).
Original entry on oeis.org
1, 1, 4, 12, 39, 118, 371, 1129, 3468, 10524, 31910, 96155, 289016, 865000, 2581577, 7679762, 22784896, 67418329, 199004329, 586052299, 1722165404, 5050349249, 14781877481, 43185726143, 125949155473, 366716549379, 1066057177765, 3094398005409, 8969054893842
Offset: 0
-
nmax = 28; CoefficientList[Series[Product[1/(1 - x^k)^Fibonacci[2 k], {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d Fibonacci[2 d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 28}]
A308817
Total number of parts in all m-color dihedral compositions of n (that is, the total number of parts in all dihedral compositions of n where a part of size m may be colored with one of m colors).
Original entry on oeis.org
1, 4, 10, 26, 56, 138, 299, 726, 1686, 4158, 10130, 25678, 64725, 166538, 428456, 1112226, 2888604, 7533750, 19653903, 51367462, 134277878, 351284164, 919080550, 2405427698, 6295780309, 16480373968, 43141303978, 112939105716, 295664584064, 774042041090, 2026429360115, 5305210333758
Offset: 1
We have a(1) = 1 because 1_1 is the only m-color dihedral composition of n = 1 and the total number of parts is 1.
We have a(2) = 4 because 2_1, 2_2, 1_1 + 1_1 are all the m-color dihedral compositions of 2 and the total number of parts is 1 + 1 + 2 = 4.
We have a(3) = 10 because 3_1, 3_2, 3_3, 1_1 + 2_1, 1_1 + 2_2, 1_1 + 1_1 + 1_1 are all the m-color dihedral compositions of n = 3 and the total number of parts is 1 + 1 + 1 + 2 + 2 + 3 = 10.
We have a(4) = 26 because 4_1, 4_2, 4_3, 4_4, 1_1 + 3_1, 1_1 + 3_2, 1_1 + 3_3, 2_1 + 2_1, 2_1 + 2_2, 2_2 + 2_2, 1_1 + 2_1 + 1_1, 1_1 + 2_2 + 1_1, 1_1 + 1_1 + 1_1 + 1_1 are all the m-color dihedral compositions of n = 4 and the total number of parts is 1 + 1 + 1 + 1 + 2 + 2 + 2 + 2 + 2 + 2 + 3 + 3 + 4 = 26.
Note that a(n) = A307415(n) = A308723(n) for n = 1, 2, 3, 4 because all cyclic compositions of n when 1 <= n <= 4 are symmetric as well (and thus are dihedral).
For n = 5, we have A307415(5) = 53 <> 59 = A308723(5), in which case, a(n) = (53 + 59)/2 = 56. For example, 1_1 + 2_1 + 3_1 is a dihedral composition of n = 5, but it is not symmetric, so it corresponds to two (inequivalent) cyclic compositions: 1_1 + 2_1 + 3_1 and 3_1 + 2_1 + 1_1. Similarly, 1_1 + 2_1 + 2_2 is a dihedral composition of n = 5, but it is not symmetric, so it corresponds to two (inequivalent) cyclic compositions: 1_1 + 2_1 + 2_2 and 2_2 + 2_1 + 1_1.
- A. K. Agarwal, n-colour compositions, Indian J. Pure Appl. Math. 31 (11) (2000), 1421-1427.
- C. G. Bower, Transforms (2).
- Petros Hadjicostas, Generalized colored circular palindromic compositions, Moscow Journal of Combinatorics and Number Theory, 9(2) (2020), 173-186.
- Meghann Moriah Gibson, Combinatorics of compositions, Master of Science, Georgia Southern University, 2017.
- Meghann Moriah Gibson, Daniel Gray, and Hua Wang, Combinatorics of n-color compositions, Discrete Mathematics 341 (2018), 3209-3226.
- Arnold Knopfmacher and Neville Robbins, Some properties of dihedral compositions, Util. Math. 92 (2013), 207-220.
- D. M. Y. Sommerville, On certain periodic properties of cyclic compositions of numbers, Proc. London Math. Soc. S2-7(1) (1909), 263-313.
A318493
Expansion of 1/(1 - Sum_{i>=1, j>=1} i*j*x^(i*j)).
Original entry on oeis.org
1, 1, 5, 15, 53, 165, 561, 1807, 5993, 19586, 64491, 211466, 695101, 2281614, 7494995, 24610588, 80829373, 265437828, 871738976, 2862815763, 9401768055, 30875971366, 101399191222, 333001988025, 1093603789613, 3591473940515, 11794667169894, 38734550365835, 127207121681103, 417757532953031
Offset: 0
-
a:=series(1/(1-add(add(i*j*x^(i*j),j=1..100),i=1..100)),x=0,30): seq(coeff(a,x,n),n=0..29); # Paolo P. Lava, Apr 02 2019
-
nmax = 29; CoefficientList[Series[1/(1 - Sum[Sum[i j x^(i j), {i, 1, nmax}], {j, 1, nmax}]), {x, 0, nmax}], x]
nmax = 29; CoefficientList[Series[1/(1 - Sum[k x^k/(1 - x^k)^2, {k, 1, nmax}]), {x, 0, nmax}], x]
nmax = 29; CoefficientList[Series[1/(1 - Sum[k DivisorSigma[0, k] x^k, {k, 1, nmax}]), {x, 0, nmax}], x]
a[0] = 1; a[n_] := a[n] = Sum[k DivisorSigma[0, k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 29}]
A375100
Triangle read by rows: T(n,k) is the number of n-color compositions of n with k pairs of adjacent parts that are the same color.
Original entry on oeis.org
1, 2, 1, 5, 2, 1, 11, 6, 3, 1, 24, 18, 8, 4, 1, 53, 47, 26, 12, 5, 1, 118, 118, 79, 38, 17, 6, 1, 261, 297, 220, 122, 56, 23, 7, 1, 577, 740, 593, 370, 185, 80, 30, 8, 1, 1276, 1816, 1583, 1068, 589, 274, 111, 38, 9, 1, 2823, 4408, 4166, 3008, 1795, 908, 395, 150, 47, 10, 1
Offset: 1
Triangle begins:
k=0 1 2 3 4 5 6 7 8
n=1: 1;
n=2: 2, 1;
n=3: 5, 2, 1;
n=4: 11, 6, 3, 1;
n=5: 24, 18, 8, 4, 1;
n=6: 53, 47, 26, 12, 5, 1;
n=7: 118, 118, 79, 38, 17, 6, 1;
n=8: 261, 297, 220, 122, 56, 23, 7, 1;
n=9: 577, 740, 593, 370, 185, 80, 30, 8, 1;
...
Row n = 3 counts:
T(3,0) = 5: (1,2_2), (2_2,1), (3_1), (3_2), (3_3).
T(3,1) = 2: (1,2_1), (2_1,1).
T(3,2) = 1: (1,1,1).
-
T_xy(max_row) = {my(N=max_row+1, x='x+O('x^N), h= 1/(1-sum(i=1,N, x^i/(1-(x^i)*(y-1)-x)))); for(n=1, N-1, print(Vecrev(polcoeff(h, n))))}
T_xy(10)
Comments