cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A274561 Numbers k such that sigma(k) == 0 (mod k+8).

Original entry on oeis.org

10, 49, 240, 550, 748, 1504, 3192, 7192, 7912, 10792, 17272, 30592, 979992, 1713592, 4526272, 8353792, 9928792, 11547352, 17999992, 89283592, 173482552, 361702144, 1081850752, 1845991216, 2146926592, 11097907192, 12985220152, 21818579968, 34357510144, 109170719992, 228354264064, 279632332792, 549746900992, 1511712719992, 2169800814592
Offset: 1

Views

Author

Paolo P. Lava, Jul 05 2016

Keywords

Examples

			sigma(10) mod (10 + 8) = 18 mod 18 = 0.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], Mod[DivisorSigma[1, #], # + 8] == 0 &] (* Michael De Vlieger, Jul 05 2016 *)

Extensions

a(16)-a(35) from Giovanni Resta

A274563 Numbers k such that sigma(k) == 0 (mod k+9).

Original entry on oeis.org

15, 208, 6976, 8415, 31815, 351351, 2077696, 20487159, 159030135, 536559616, 2586415095, 137433972736, 2199003332608
Offset: 1

Views

Author

Paolo P. Lava, Jul 06 2016

Keywords

Examples

			sigma(15) mod (15 + 9) = 24 mod 24 = 0.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], Mod[DivisorSigma[1, #], # + 9] == 0 &] (* Michael De Vlieger, Jul 06 2016 *)

Extensions

a(7)-a(13) from Giovanni Resta, Jul 06 2016

A274564 Numbers k such that sigma(k) == 0 (mod k-9).

Original entry on oeis.org

6, 7, 8, 10, 11, 15, 19, 24, 33, 105, 33705, 33624064, 2199041081344
Offset: 1

Views

Author

Paolo P. Lava, Jul 06 2016

Keywords

Examples

			sigma(10) mod (10 - 9) = 18 mod 1 = 0.
		

Crossrefs

Programs

  • Magma
    [n: n in [10..2*10^6] | SumOfDivisors(n) mod (n-9) eq 0 ]; // Vincenzo Librandi, Jul 06 2016
    
  • Mathematica
    k = -9; Select[Range[Abs@k+1, 10^6], Mod[DivisorSigma[1, #], # + k] == 0 &] (* Vincenzo Librandi, Jul 06 2016 *)
  • PARI
    isok(k) = (k!=9) && (Mod(sigma(k), k-9) == 0); \\ Michel Marcus, May 30 2025

Extensions

a(12)-a(13) from Giovanni Resta, Jul 06 2016
Terms 6,7,8 inserted by Max Alekseyev, May 29 2025

A274559 Numbers k such that sigma(k) == 0 (mod k+7).

Original entry on oeis.org

8, 272, 7232, 30848, 516608, 134094848, 2146992128, 35184309174272
Offset: 1

Views

Author

Paolo P. Lava, Jul 05 2016

Keywords

Examples

			sigma(8) mod (8+7) = 15 mod 15 = 0.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], Mod[DivisorSigma[1, #], # + 7] == 0 &] (* Michael De Vlieger, Jul 05 2016 *)

Extensions

a(6)-a(7) from Giovanni Resta, Jul 05 2016
a(8) from Max Alekseyev, May 29 2025

A274565 Numbers k such that sigma(k) == 0 (mod k+10).

Original entry on oeis.org

14, 176, 1376, 3230, 3770, 6848, 114256, 125696, 544310, 561824, 740870, 2075648, 4199030, 4607296, 8436950, 33468416, 134045696, 199272950, 624032630, 1113445430, 1550860550, 85905593344, 2199001235456, 35184284008448
Offset: 1

Views

Author

Paolo P. Lava, Jul 06 2016

Keywords

Examples

			sigma(14) mod (14 + 10) = 24 mod 24 = 0.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..2*10^6] | SumOfDivisors(n) mod (n+10) eq 0 ]; // Vincenzo Librandi, Jul 06 2016
  • Mathematica
    k = 10; Select[Range[Abs@k+1, 10^6], Mod[DivisorSigma[1, #], # + k] == 0 &] (* Vincenzo Librandi, Jul 06 2016 *)

Extensions

a(13)-a(23) from Giovanni Resta, Jul 06 2016
a(24) from Max Alekseyev, May 29 2025

A275996 Numbers n whose abundance is 64: sigma(n) - 2n = 64.

Original entry on oeis.org

108, 220, 6808, 8968, 14008, 24448, 66928, 552568, 786208, 1020568, 5303488, 8229568, 10001848, 133685248, 499722448, 2608895488, 4733164768, 7163795488, 13707973408, 14468025568, 16122444736, 27339731968, 34351218688, 34672397728, 35371084288, 69657461248
Offset: 1

Views

Author

Timothy L. Tiffin, Aug 16 2016

Keywords

Comments

Any term x = a(m) of this sequence can be used with any term y of A275997 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable.
The smallest amicable pair is (220, 284) = (a(2), A275997(2)) = (A063990(1), A063990(2)), where 284 - 220 = 64 is the abundance of 220 and the deficiency of 284.
The amicable pair (66928, 66992) = (a(7), A275997(11)) = (A063990(18), A063990(19)), and 66992 - 66928 = 64 is the abundance of 66928 and the deficiency of 66992.

Examples

			a(1) = 108, since sigma(108) - 2*108 = 280 - 216 = 64.
		

Crossrefs

Programs

  • PARI
    isok(n) = sigma(n) - 2*n == 64; \\ Michel Marcus, Dec 30 2016

Extensions

a(14)-a(15) from Michel Marcus, Dec 30 2016
a(16)-a(21) from Lars Blomberg, Jan 12 2017
Terms a(22) onward from Max Alekseyev, Aug 27 2025

A275997 Numbers k whose deficiency is 64: 2k - sigma(k) = 64.

Original entry on oeis.org

134, 284, 410, 632, 1292, 1628, 4064, 9752, 12224, 22712, 66992, 72944, 403988, 556544, 2161664, 2330528, 8517632, 13228352, 14563832, 15422912, 20732792, 89472632, 134733824, 150511232, 283551872, 537903104, 731670272, 915473696, 1846850576, 2149548032, 2159587616
Offset: 1

Views

Author

Timothy L. Tiffin, Aug 16 2016

Keywords

Comments

Any term x = a(m) in this sequence can be used with any term y in A275996 to satisfy the property (sigma(x)+sigma(y))/(x+y) = 2, which is a necessary (but not sufficient) condition for two numbers to be amicable.
The smallest amicable pair is (220, 284) = (A275996(2), a(2)) = (A063990(1), A063990(2)), where 284 - 220 = 64 is the abundance of 220 and the deficiency of 284.
The amicable pair (66928, 66992) = (A275996(7), a(11)) = (A063990(18), A063990(19)), where 66992 - 66928 = 64 is the deficiency of 66992 and the abundance of 66928.
Contains numbers 2^(k-1)*(2^k + 63) whenever 2^k + 63 is prime. - Max Alekseyev, Aug 27 2025

Examples

			a(1) = 134, since 2*134 - sigma(134) = 268 - 204 = 64.
		

Crossrefs

Deficiency k: A191363 (k=2), A125246 (k=4), A141548 (k=6), A125247 (k=8), A101223 (k=10), A141549 (k=12), A141550 (k=14), A125248 (k=16), A223608 (k=18), A223607 (k=20), A223606 (k=22), A385255(k=24), A275702 (k=26), A387352 (k=32).
Abundance k: A088831 (k=2), A088832 (k=4), A087167 (k=6), A088833 (k=8), A223609 (k=10), A141545 (k=12), A141546 (k=14), A141547 (k=16), A223610 (k=18), A223611 (k=20), A223612 (k=22), A223613 (k=24), A275701 (k=26), A175989 (k=32), A275996 (k=64), A292626 (k=128).

Programs

  • Mathematica
    Select[Range[10^7], 2 # - DivisorSigma[1, #] == 64 &] (* Michael De Vlieger, Jan 10 2017 *)
  • PARI
    isok(n) = 2*n - sigma(n) == 64; \\ Michel Marcus, Dec 30 2016

Extensions

a(23)-a(31) from Jinyuan Wang, Mar 02 2020

A292626 Numbers k whose abundance is 128: sigma(k) - 2*k = 128.

Original entry on oeis.org

860, 5336, 6536, 9656, 16256, 55796, 70864, 98048, 361556, 776096, 2227616, 4145216, 4498136, 4632896, 8124416, 13086016, 34869056, 38546576, 150094976, 172960856, 196066256, 962085536, 1080008576, 1733780336, 1844788112, 2143256576, 2531343872, 2986104064, 9677743616, 11276687456, 17104503968, 20680182272, 21568135616
Offset: 1

Views

Author

Fabian Schneider, Sep 20 2017

Keywords

Crossrefs

Subsequence of A259174.
Deficiency k: A191363 (k=2), A125246 (k=4), A141548 (k=6), A125247 (k=8), A101223 (k=10), A141549 (k=12), A141550 (k=14), A125248 (k=16), A223608 (k=18), A223607 (k=20), A223606 (k=22), A385255(k=24), A275702 (k=26), A387352 (k=32), A275997 (k=64).
Abundance k: A088831 (k=2), A088832 (k=4), A087167 (k=6), A088833 (k=8), A223609 (k=10), A141545 (k=12), A141546 (k=14), A141547 (k=16), A223610 (k=18), A223611 (k=20), A223612 (k=22), A223613 (k=24), A275701 (k=26), A175989 (k=32), A275996 (k=64).

Programs

  • Mathematica
    fQ[n_] := DivisorSigma[1, n] == 2 n + 128; Select[ Range@ 10^8, fQ] (* Robert G. Wilson v, Nov 19 2017 *)
  • PARI
    isok(n) = sigma(n) - 2*n == 128; \\ Michel Marcus, Sep 20 2017

Extensions

a(9)-a(18) from Michel Marcus, Sep 20 2017
a(19)-a(24), a(26), a(29)-a(30), a(33) from Robert G. Wilson v, Nov 20 2017
Missing terms a(25), a(27)-a(28), a(31)-a(32) inserted and terms a(34) onward added by Max Alekseyev, Aug 30 2025

A292558 a(n) is the smallest number k such that sigma(k) - 2k = 2^n.

Original entry on oeis.org

20, 12, 56, 550, 572, 108, 860, 952, 1232, 6328, 3708, 40540, 37072, 79288, 327260, 357112, 302000, 527296, 1764056, 6506512, 38559776, 21893248, 42257216, 167771740, 90798560, 469761208, 508198064, 490304800, 1353048560, 2951488480, 5067417200, 32648918272, 40086360272
Offset: 1

Views

Author

XU Pingya, Sep 19 2017

Keywords

Comments

For n > 31, a(n) > 1.724 * 10^10.
a(1) = A088831(1), a(2) = A088832(1), a(3) = A088833(1), a(4) = A141547(1), a(5) = A175989(1), a(6) = A275996(1), a(7) = A292626(1). - Max Alekseyev, Aug 27 2025

Examples

			sigma(20) - 2*20 = 2^1, a(1) = 20.
sigma(108) - 2*108 = 64 = 2^6, a(6) = 108.
		

Crossrefs

Programs

  • Mathematica
    Table[k = 1; While[Log[2, DivisorSigma[1, k] - 2k] != n, k++]; k, {n, 30}]
  • PARI
    a(n) = my(k=1); while(sigma(k) - 2*k != 2^n, k++); k; \\ Michel Marcus, Sep 19 2017

Extensions

Terms a(32) onward from Max Alekseyev, Aug 27 2025

A385255 Numbers m whose deficiency is 24: sigma(m) - 2*m = -24.

Original entry on oeis.org

124, 9664, 151115727458150838697984
Offset: 1

Views

Author

Max Alekseyev, Jul 29 2025

Keywords

Comments

Contains numbers 2^(k-1)*(2^k + 23) for k in A057203. First three terms have this form.

Crossrefs

Deficiency k: A191363 (k=2), A125246 (k=4), A141548 (k=6), A125247 (k=8), A101223 (k=10), A141549 (k=12), A141550 (k=14), A125248 (k=16), A223608 (k=18), A223607 (k=20), A223606 (k=22), A275702 (k=26).
Abundance k: A088831 (k=2), A088832 (k=4), A087167 (k=6), A088833 (k=8), A223609 (k=10), A141545 (k=12), A141546 (k=14), A141547 (k=16), A223610 (k=18), A223611 (k=20), A223612 (k=22), A223613 (k=24), A275701 (k=26).
Cf. A057203.
Previous Showing 11-20 of 24 results. Next