cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A236767 Numbers whose square is a fourth power plus a prime.

Original entry on oeis.org

2, 10, 37, 82, 442, 577, 730, 901, 1090, 1297, 1765, 2026, 4357, 5185, 5626, 7570, 8650, 9217, 9802, 10405, 11026, 15130, 17425, 18226, 23410, 24337, 26245, 31330, 34597, 35722, 40402, 41617, 47962
Offset: 1

Views

Author

Hans Havermann, Jan 30 2014

Keywords

Comments

Based on a 1999 observation of Alessandro Zaccagnini (via John Robertson) intended to dissuade expectation of a finite fourth-power analogy to A020495, A045911.
It can be shown that A089001^2 + 1 are members of this sequence. David Applegate shows that they are the only members: If x^2 = y^4 + p, let a = x - y^2. Then y^4 + p = x^2 = (y^2 + a)^2 = y^4 + 2a*y^2 + a^2, so p = 2a*y^2 + a^2, and so a divides p. Since p is a prime, a must be a unit (that is, +1 or -1). But since p >= 2, a must be +1.

Examples

			2 is a term because 2^2 = 1^4 + 3;
10 is a term because 10^2 = 3^4 + 19;
37 is a term because 37^2 = 6^4 + 73.
		

Crossrefs

Programs

  • Mathematica
    r=Range[10000]^4; j=1; Do[c=i^2; k=c^2-Take[r,i]; Do[c++; j=j+2; k=k+j; If[MemberQ[PrimeQ[k], True], Print[c]], {2*i+1}], {i, 10000}] (* brute force *)
    s=A089001; s^2+1 (* based on formula *)

Formula

A089001^2 + 1

A239920 Integers n such that 2n^2+1, 2n^3+1 and 2n^4+1 are prime.

Original entry on oeis.org

1, 6, 21, 30, 96, 297, 375, 621, 1359, 1704, 1749, 1761, 3696, 3849, 4467, 8025, 8646, 9834, 11352, 15630, 17397, 17949, 19575, 20274, 27087, 28452, 30504, 32154, 32307, 33666, 35670, 36240, 37785, 37962, 39927, 40617, 42987, 44250, 47559, 49335, 49599
Offset: 1

Views

Author

Zak Seidov, Mar 29 2014

Keywords

Crossrefs

Subsequence of A239874. Cf. A089001, A168550.

Programs

  • Mathematica
    Select[Range[0, 50000], PrimeQ[2 #^2 + 1] && PrimeQ[2  #^3 + 1] && PrimeQ[2 #^4 + 1]&] (* Vincenzo Librandi, Mar 30 2014 *)
  • PARI
    s=[]; for(n=1, 100000, if(isprime(2*n^2+1) && isprime(2*n^3+1) && isprime(2*n^4+1), s=concat(s, n))); s \\ Colin Barker, Mar 29 2014

A240099 Integers n such that 2n^k + 1, for k = 2..6, are prime.

Original entry on oeis.org

1, 44250, 1004004, 3490575, 3517335, 5750115, 10729026, 19193559, 20251770, 25284039, 25552194, 30204801, 33733206, 39015405, 47518809, 52463445, 58370025, 69502971, 72009429, 77086380, 78510156, 83972646, 85955475, 89190969, 90499584, 92246199, 95374005
Offset: 1

Views

Author

Zak Seidov, Apr 01 2014

Keywords

Comments

Note that 2n^7+1 may or may not be prime.
First n>1 such that 2n^k+1, for k=2..7, are prime, is a(4) = 3490575.
First n>1 such that 2n^k+1, for k=2..8, are prime, is 83972646.
Subsequence of A239925: a(2) = 44250 = A239925(4), a(3) = 1004004 = A239925(27).

Crossrefs

Programs

  • Mathematica
    Select[Range[10^8],AllTrue[2#^Range[2,6]+1,PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 18 2015 *)

A115272 Primes p such that p + 2, 18*p^2 + 1, and 18*(p+2)^2 + 1 are all primes.

Original entry on oeis.org

29, 107, 431, 1487, 1607, 2141, 5501, 10139, 10271, 17579, 22481, 23057, 27479, 32369, 36341, 36929, 38447, 55931, 57527, 69827, 75539, 78539, 79691, 81047, 81971, 84179, 86027, 89561, 93761, 102059, 112571, 113147, 118799, 119687
Offset: 1

Views

Author

Zak Seidov, Jan 19 2006

Keywords

Examples

			a(1)=29 because 31, 18*29^2 + 1 = 15139, and 18*31^2 + 1 = 17299 are all primes.
		

Crossrefs

Cf. A089001 (Numbers n such that 2*n^2 + 1 is prime),
A090612 (Numbers k such that the k-th prime is of the form 2*k^2+1),
A090698 (Primes of the form 2*n^2+1),
A113541 (Numbers n such that 18*n^2+1 is a multiple of 19).

Programs

  • Magma
    [p: p in PrimesUpTo(200000)| IsPrime(p+2) and IsPrime(18*p^2+1) and IsPrime(18*(p+2)^2+1)] // Vincenzo Librandi, Nov 13 2010

Extensions

More terms from Vincenzo Librandi, Mar 27 2010

A117132 Numbers n such that 5*n^5 + 1 is prime.

Original entry on oeis.org

8, 14, 32, 80, 138, 144, 236, 284, 302, 342, 344, 390, 420, 438, 446, 510, 542, 546, 570, 612, 638, 644, 680, 690, 696, 768, 794, 804, 812, 816, 822, 834, 866, 888, 908, 942, 960, 1020, 1022, 1148, 1190, 1194, 1224, 1250, 1278, 1358, 1368, 1398, 1434, 1446
Offset: 1

Views

Author

Parthasarathy Nambi, Apr 20 2006

Keywords

Examples

			If n=144 then 5*n^5 + 1 = 309586821121 (prime).
		

Crossrefs

Cf. A089001.

Programs

Extensions

More terms from Stefan Steinerberger and Giovanni Resta, Apr 22 2006

A173416 Exactly one of 2n^2-1 and 2n^2+1 is prime.

Original entry on oeis.org

1, 2, 4, 7, 8, 9, 10, 11, 13, 15, 17, 18, 22, 25, 27, 28, 30, 33, 34, 38, 39, 41, 43, 46, 49, 50, 52, 56, 59, 62, 63, 64, 66, 69, 72, 73, 75, 76, 80, 81, 85, 91, 92, 93, 95, 96, 98, 99, 105, 108, 109, 112, 113, 115, 118, 123, 125, 126, 127, 134, 135, 137, 140, 141, 143
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 01 2010

Keywords

Comments

Numbers in A089001 or in A066049 but not in both. [From R. J. Mathar, Mar 09 2010]

Examples

			a(1)=1 because 2*1^2-1=1 is nonprime and 2*1^2+1=3 is prime.
		

Extensions

37 removed by R. J. Mathar, Mar 09 2010

A240105 Integers m such that 2*m^k + 1, for k = 2..7, are prime.

Original entry on oeis.org

1, 3490575, 83972646, 414180489, 476072025, 1881147720, 3020243916, 3188924769, 3285167214, 3543143220, 6593858205, 8239349955, 10914074124, 14102235060, 15455042889, 16196415300, 16588528539, 16636093485, 17688635511, 17929182270, 18997337436, 19290317670, 19347263739
Offset: 1

Views

Author

Zak Seidov, Apr 01 2014

Keywords

Comments

First m>1 such that 2*m^k+1, for k=2..8, are prime, is a(3) = 83972646.
Subsequence of A240099: a(2) = 3490575 = A240099(4), a(3) = 83972646 = A240099(22).

Crossrefs

Extensions

More terms from Jinyuan Wang, Jun 12 2025
Previous Showing 11-17 of 17 results.