cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A343660 Number of maximal pairwise coprime sets of at least two divisors > 1 of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 0, 2, 0, 4, 0, 0, 1, 1, 1, 4, 0, 1, 1, 3, 0, 4, 0, 2, 2, 1, 0, 4, 0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 8, 0, 1, 2, 0, 1, 4, 0, 2, 1, 4, 0, 6, 0, 1, 2, 2, 1, 4, 0, 4, 0, 1, 0, 8, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Apr 26 2021

Keywords

Examples

			The a(n) sets for n = 6, 12, 24, 30, 36, 60, 72, 96:
  {2,3}  {2,3}  {2,3}  {5,6}    {2,3}  {5,6}    {2,3}  {2,3}
         {3,4}  {3,4}  {2,15}   {2,9}  {2,15}   {2,9}  {3,4}
                {3,8}  {3,10}   {3,4}  {3,10}   {3,4}  {3,8}
                       {2,3,5}  {4,9}  {3,20}   {3,8}  {3,16}
                                       {4,15}   {4,9}  {3,32}
                                       {5,12}   {8,9}
                                       {2,3,5}
                                       {3,4,5}
		

Crossrefs

The case of pairs is A089233.
The case with 1's is A343652.
The case with singletons is (also) A343652.
The non-maximal version is A343653.
The non-maximal version with 1's is A343655.
The version for subsets of {2..n} is A343659 (for n > 2).
A018892 counts coprime unordered pairs of divisors.
A051026 counts pairwise indivisible subsets of {1..n}.
A066620 counts pairwise coprime 3-sets of divisors.
A100565 counts pairwise coprime unordered triples of divisors.

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@Most@*Subsets/@y];
    Table[Length[fasmax[Select[Subsets[Rest[Divisors[n]]],CoprimeQ@@#&]]],{n,100}]

Formula

a(n) = A343652(n) - A005361(n).

A305106 Number of unitary factorizations of Heinz numbers of integer partitions of n. Number of multiset partitions of integer partitions of n with pairwise disjoint blocks.

Original entry on oeis.org

1, 1, 2, 4, 7, 12, 21, 34, 55, 87, 138, 211, 324, 486, 727, 1079, 1584, 2305, 3337, 4789, 6830, 9712, 13689, 19225, 26841, 37322, 51598, 71108, 97580, 133350, 181558, 246335, 332991, 448706, 602607, 806732, 1077333, 1433885, 1903682, 2520246, 3328549, 4383929
Offset: 0

Views

Author

Gus Wiseman, May 25 2018

Keywords

Examples

			The a(6) = 21 unitary factorizations:
(13) (21) (22) (25) (27) (28) (30) (36) (40) (48) (64)
(2*11) (2*15) (3*7) (3*10) (3*16) (4*7) (4*9) (5*6) (5*8)
(2*3*5)
The a(6) = 21 multiset partitions:
{{6}}
{{2,4}}
{{1,5}}
{{3,3}}
{{2,2,2}}
{{1,1,4}}
{{1,2,3}}
{{1,1,2,2}}
{{1,1,1,3}}
{{1,1,1,1,2}}
{{1,1,1,1,1,1}}
{{1},{5}}
{{1},{2,3}}
{{2},{4}}
{{2},{1,3}}
{{2},{1,1,1,1}}
{{1,1},{4}}
{{1,1},{2,2}}
{{3},{1,2}}
{{3},{1,1,1}}
{{1},{2},{3}}
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[BellB[Length[Union[y]]],{y,IntegerPartitions[n]}],{n,30}]
    (* Second program: *)
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[With[{t = n - i j}, b[t, Min[t, i - 1], k]], {j, 1, n/i}] k + b[n, i - 1, k]]];
    T[n_, k_] := Sum[b[n, n, k - i] (-1)^i Binomial[k, i], {i, 0, k}]/k!;
    a[n_] := Sum[T[n, k], {k, 0, Floor[(Sqrt[1 + 8n] - 1)/2]}];
    a /@ Range[0, 50] (* Jean-François Alcover, Dec 14 2020, after Alois P. Heinz in A321878 *)

A284167 a(n) = Sum_{i=1..A000005(n)} d(n+k(i)), where d(t) is the number of divisors of t and k(i) is the i-th divisor of n.

Original entry on oeis.org

2, 5, 7, 10, 8, 15, 8, 18, 16, 18, 10, 29, 8, 19, 25, 28, 10, 33, 10, 35, 26, 20, 12, 50, 18, 20, 31, 36, 12, 51, 10, 42, 27, 23, 33, 62, 8, 22, 30, 60, 12, 53, 10, 40, 52, 22, 14, 78, 20, 41, 28, 38, 12, 63, 36, 63, 30, 24, 16, 95, 8, 23, 59, 60, 32, 54, 10
Offset: 1

Views

Author

Ctibor O. Zizka, Mar 21 2017

Keywords

Comments

Let S(n,n) be the number of solutions of the equation n/x + n/y = c where n, c, x, and y are positive integers. Then S(n,n) = Sum_{i=1..A000005(n)} d(n+k(i)), where d(t) is the number of divisors of t and k(i) is the i-th divisor of n.
For c = 1 , S(n,n) = A000005(n).
Let S(n,m) be the number of solutions of the equation n/x + m/y = c where n, m, c, x, and y are positive integers, n not equal to m. Let k(i) be the i-th divisor of n, and k(j) the j-th divisor of m. Let d(t) be the number of divisors of t. Let R = d(k(i) + k(j)). Then S(n,m) = Sum_{i=1..A000005(n)} Sum_{j=1..A000005(m)} [R*1 if gcd(k(i),k(j)) = 1 , R*0 else].
For c = 1 , S(n,m) = A000005(n) * A000005(m) - P, where P is the number of divisor pairs such that gcd(k(i),k(j)) >= 2.

Examples

			For n = 4, divisors of 4 are 1, 2, 4; thus a(4) = d(4+1) + d(4+2) + d(4+4) = d(5) + d(6) + d(8) = 2 + 4 + 4 = 10.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[DivisorSigma[0, d + n], {d, Divisors@n}]; Array[a, 67] (* Giovanni Resta, Mar 21 2017 *)
  • PARI
    for(n=1, 101, print1(sumdiv(n, d, numdiv(d + n)),", ")) \\ Indranil Ghosh, Mar 22 2017
    
  • Python
    from sympy import divisor_count, divisors
    def a(n):
        return sum(divisor_count(n + d) for d in divisors(n)) # Indranil Ghosh, Mar 22 2017

Extensions

a(21)-a(67) from Giovanni Resta, Mar 21 2017

A321519 Let d(n,i), i = 1..k be the k divisors of n^2 + 1 (the number 1 is not counted). a(n) is the number of ordered pairs d(n,i) < d(n,j) such that gcd(d(n,i), d(n,j)) = 1.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 1, 1, 6, 0, 1, 0, 6, 2, 1, 0, 6, 1, 6, 0, 1, 0, 6, 1, 1, 1, 6, 2, 6, 1, 1, 0, 6, 2, 1, 0, 2, 1, 11, 1, 1, 1, 25, 1, 1, 1, 1, 1, 6, 0, 6, 0, 16, 1, 1, 1, 1, 1, 6, 1, 1, 0, 6, 3, 1, 2, 1, 6, 25, 0, 6, 1, 6, 1, 1, 1, 6, 2, 25, 0, 1, 1
Offset: 1

Views

Author

Michel Lagneau, Nov 12 2018

Keywords

Comments

Terms only depends on prime signature of n^2+1. - David A. Corneth, Nov 14 2018
We observe an interesting statistic for n <= 10^5: the four values of a(n) = 0, 1, 6, 25 represent more than 82% (see the table below).
a(A005574(n)) = 0, a(A085722(n)) = 1, a(A272078(n)) = 6, a(A316351(n)) = 25.
In the general case, a(k) = m if k^2+1 = p*q^m, m = 1, 2, 3, ... with p, q primes.
+--------------+-----------------------+------------+
| | number of occurrences | |
| a(n) | for n <= 10^5 | percentage |
+--------------+-----------------------+------------+
| 0 | 6656 | 6.656% |
| 1 | 23255 | 23.255% |
| 6 | 31947 | 31.947% |
| 25 | 20461 | 20.461% |
| other values | 17681 | 17.681% |
+--------------+-----------------------+------------+

Examples

			a(13) = 6 because the divisors {d(i)} of 13^2 + 1 = 170 (without the number 1)  are  {2, 5, 10, 17, 34, 85, 170}, and gcd(d(i), d(j)) = 1 for the 6 following pairs of elements of {d(i)}: (2, 5), (2, 17), (2, 85), (5, 17), (5, 34) and (10, 17).
		

Crossrefs

Programs

  • Maple
    with(numtheory):nn:=10^3:
    for n from 1 to nn do:
      it:=0:d:=divisors(n^2+1):n0:=nops(d):
       for k from 2 to n0-1 do:
        for l from k+1 to n0 do:
         if gcd(d[k],d[l])= 1
          then
          it:=it+1
          else
         fi:
       od:
      od:
      printf(`%d, `,it):
    od:
  • Mathematica
    f[n_] := (DivisorSigma[0, n^2] - 1)/2 - DivisorSigma[0, n] + 1; Map[f, Range[0,100]^2+1] (* Amiram Eldar, Nov 14 2018 after Robert G. Wilson v at A089233 *)
  • PARI
    a(n) = {my(d=divisors(n^2+1)); sum(k=2, #d, sum(j=2, k-1, gcd(d[k], d[j]) == 1));} \\ Michel Marcus, Nov 12 2018

Formula

a(n) = A089233(n^2+1). - Michel Marcus, Nov 13 2018
Previous Showing 11-14 of 14 results.