A372307 Square array read by antidiagonals: T(n,k) is the number of derangements of a multiset comprising n repeats of a k-element set.
1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 9, 10, 1, 0, 1, 1, 44, 297, 56, 1, 0, 1, 1, 265, 13756, 13833, 346, 1, 0, 1, 1, 1854, 925705, 6699824, 748521, 2252, 1, 0, 1, 1, 14833, 85394646, 5691917785, 3993445276, 44127009, 15184, 1, 0, 1
Offset: 0
Examples
Square array T(n,k) begins: 1, 1, 1, 1, 1, 1, ... 1, 0, 1, 2, 9, 44, ... 1, 0, 1, 10, 297, 13756, ... 1, 0, 1, 56, 13833, 6699824, ... 1, 0, 1, 346, 748521, 3993445276, ... 1, 0, 1, 2252, 44127009, 2671644472544, ... 1, 0, 1, 15184, 2750141241, 1926172117389136, ... 1, 0, 1, 104960, 178218782793, 1463447061709156064, ...
Links
- Jeremy Tan, Antidiagonals n = 0..32, flattened
- Shalosh B. Ekhad, Christoph Koutschan and Doron Zeilberger, There are EXACTLY 1493804444499093354916284290188948031229880469556 Ways to Derange a Standard Deck of Cards (ignoring suits) [and many other such useful facts], arXiv:2101.10147 [math.CO], 2021.
- S. Even and J. Gillis, Derangements and Laguerre polynomials, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 79, Issue 1, January 1976, pp. 135-143.
- B. H. Margolius, The Dinner-Diner Matching Problem, Mathematics Magazine, 76 (2003), pp. 107-118.
- Jeremy Tan, Python program
- Raimundas Vidunas, MacMahon's master theorem and totally mixed Nash equilibria, arXiv:1401.5400 [math.CO], 2014.
- Raimundas Vidunas, Counting derangements and Nash equilibria, Ann. Comb. 21, No. 1, 131-152 (2017).
- Index entries for sequences related to card matching
Crossrefs
Programs
-
Maple
A:= (n, k)-> (-1)^(n*k)*int(exp(-x)*orthopoly[L](n, x)^k, x=0..infinity): seq(seq(A(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Aug 27 2024
-
Mathematica
Table[Abs[Integrate[Exp[-x] LaguerreL[n, x]^(s-n), {x, 0, Infinity}]], {s, 0, 9}, {n, 0, s}] // Flatten
-
Python
# See link.
Formula
T(n,k) = (-1)^(n*k) * Integral_{x=0..oo} exp(-x)*L_n(x)^k dx, where L_n(x) is the Laguerre polynomial of degree n (Even and Gillis).
T(n,k) ~ A089759(n,k)/exp(n).
Comments