cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 73 results. Next

A235639 Primes whose base-9 representation is also the base-6 representation of a prime.

Original entry on oeis.org

2, 3, 5, 19, 23, 41, 113, 127, 131, 163, 199, 271, 419, 433, 739, 743, 761, 919, 991, 1009, 1013, 1063, 1153, 1171, 1459, 1481, 1499, 1553, 1567, 1571, 1733, 1747, 1783, 1873, 1913, 2237, 2377, 2381, 2539, 2557, 2593, 2633, 2939, 3011, 3079, 3083, 3187, 3259, 3331, 3659
Offset: 1

Views

Author

M. F. Hasler, Jan 13 2014

Keywords

Comments

This sequence is part of the two-dimensional array of sequences based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.

Examples

			19 = 21_9 and 21_6 = 13 are both prime, so 19 is a term.
509 = 625_9 and 625_6 = 17 are both prime, but 625 is not a valid base-6 integer, so 509 is not a term.
		

Crossrefs

Cf. A231481, A235265, A235266, A152079, A235461 - A235482, A065720 - A065727, A235394, A235395, A089971A020449, A089981, A090707 - A091924, A235615 - A235638. See the LINK for further cross-references.

Programs

  • Maple
    R:= 2: x:= 2: count:= 1:
    while count < 100 do
      x:= nextprime(x);
      L:= convert(x,base,6);
      y:= add(9^(i-1)*L[i],i=1..nops(L));
      if isprime(y) then count:= count+1; R:= R, y fi
    od:
    R; # Robert Israel, May 18 2020
  • PARI
    is(p,b=6,c=9)=vecmax(d=digits(p,c))
    				
  • PARI
    forprime(p=1,3e3,is(p,9,6)&&print1(vector(#d=digits(p,6),i,9^(#d-i))*d~,",")) \\ To produce the terms, this is more efficient than to select them using straightforwardly is(.)=is(.,6,9)

A090709 Primes whose decimal representation is a valid number in base 6 and interpreted as such is again a prime.

Original entry on oeis.org

2, 3, 5, 11, 31, 101, 151, 211, 241, 251, 331, 421, 431, 521, 1021, 1151, 1231, 1321, 2011, 2131, 2311, 2351, 2441, 2531, 2551, 3041, 3221, 3251, 3301, 3541, 4021, 4111, 4201, 4421, 4441, 4451, 5011, 5021, 5101, 5231, 5441, 5531, 10331, 11131, 11311
Offset: 1

Views

Author

Cino Hilliard, Jan 18 2004

Keywords

Examples

			31 is prime in decimal and a valid number in base 6: 31_6 = 19, a prime.
		

Crossrefs

Programs

  • Magma
    [n:n in PrimesUpTo(12000)| Max(Intseq(n,10)) le 5 and IsPrime(Seqint(Intseq(Seqint(Intseq(n),6))))]; // Marius A. Burtea, Jun 30 2019
  • Mathematica
    Select[ FromDigits@# & /@ IntegerDigits[ Prime@ Range@ 270, 6], PrimeQ] (* Robert G. Wilson v, Jan 05 2014 *)
    vn6pQ[n_]:=Module[{idn=IntegerDigits[n]},Max[idn]<6&&PrimeQ[ FromDigits[ idn,6]]]; Select[Prime[Range[1500]],vn6pQ] (* Harvey P. Dale, Jul 10 2015 *)
  • PARI
    fixBase(n, oldBase, newBase)=my(d=digits(n, oldBase), t=newBase-1); for(i=1, #d, if(d[i]>t, for(j=i, #d, d[j]=t); break)); fromdigits(d, newBase)
    list(lim)=my(v=List(), t); forprime(p=2, fixBase(lim\1, 10, 6), if(isprime(t=fromdigits(digits(p, 6), 10)), listput(v, t))); Vec(v) \\ Charles R Greathouse IV, Nov 07 2016
    
  • Python
    from gmpy2 import digits, is_prime
    A090709_list = [n for n in (int(digits(d,6)) for d in range(10**6) if is_prime(d)) if is_prime(n)] # Chai Wah Wu, Apr 09 2016
    

Extensions

Following suggestions by V.J. Pohjola and Donovan Johnson, name, example and offset corrected by M. F. Hasler, Jan 03 2014

A090710 Primes with digits less than 7 whose decimal representation is also a prime when interpreted in base 7.

Original entry on oeis.org

2, 3, 5, 23, 41, 43, 61, 113, 131, 241, 313, 401, 421, 443, 461, 463, 661, 1013, 1033, 1051, 1123, 1231, 1301, 1433, 1453, 1543, 1613, 2111, 2131, 2153, 2203, 2333, 2441, 2531, 2551, 3121, 3163, 3251, 3323, 3433, 3541, 4001, 4111, 4153, 4201, 4241, 4421
Offset: 1

Views

Author

Cino Hilliard, Jan 18 2004

Keywords

Comments

Note that the definition of, e.g., A090714 works "the other way round". - M. F. Hasler, Jan 03 2014

Examples

			23 is a prime and a valid number in base 7, and 23 [base 7] = 17 [base 10] is again a prime.
		

Crossrefs

Programs

  • Mathematica
    Select[ FromDigits@# & /@ IntegerDigits[ Prime@ Range@ 270, 7], PrimeQ] (* Robert G. Wilson v, Jan 05 2014 *)
    FromDigits/@Select[Tuples[{0,1,2,3,4,5,6},4],AllTrue[ {FromDigits[ #], FromDigits[ #,7]}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 29 2015 *)
  • PARI
    is_A090710(p,b=7)=vecmax(d=digits(p))M. F. Hasler, Jan 03 2014
    
  • PARI
    fixBase(n, oldBase, newBase)=my(d=digits(n, oldBase), t=newBase-1); for(i=1, #d, if(d[i]>t, for(j=i, #d, d[j]=t); break)); fromdigits(d, newBase)
    list(lim)=my(v=List(), t); forprime(p=2, fixBase(lim\1, 10, 7), if(isprime(t=fromdigits(digits(p, 7), 10)), listput(v, t))); Vec(v) \\ Charles R Greathouse IV, Nov 07 2016

Extensions

Name, example and offset corrected by M. F. Hasler, Jan 03 2014

A235475 Primes whose base-2 representation also is the base-5 representation of a prime.

Original entry on oeis.org

2, 7, 11, 13, 19, 41, 59, 127, 151, 157, 167, 173, 181, 191, 223, 233, 241, 271, 313, 331, 409, 421, 443, 463, 541, 563, 577, 607, 613, 641, 701, 709, 733, 743, 809, 859, 877, 919, 929, 953, 967, 991, 1021, 1033, 1069, 1087, 1193, 1259, 1373, 1423, 1451, 1453, 1471, 1483, 1493, 1549, 1697, 1753, 1759, 1783, 1787, 1831, 1877, 1979, 1993
Offset: 1

Views

Author

M. F. Hasler, Jan 12 2014

Keywords

Comments

This sequence is part of a two-dimensional array of sequences, given in the LINK, based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.
For further motivation and cross-references, see sequence A235265 which is the main entry for this whole family of sequences.

Examples

			7 = 111_2 and 111_5 = 31 are both prime, so 7 is a term.
		

Crossrefs

Cf. A235266, A152079, A065720A036952, A065721 - A065727, A235394, A235395, A089971A020449, A089981, A090707 - A091924, A235461 - A235482. See the LINK for further cross-references.

Programs

  • Mathematica
    Select[Prime[Range[400]],PrimeQ[FromDigits[IntegerDigits[#,2],5]]&] (* Harvey P. Dale, Jun 15 2019 *)
  • PARI
    is(p,b=5,c=2)=isprime(vector(#d=digits(p,c),i,b^(#d-i))*d~)&&isprime(p) \\ This code is only valid for b>c.

A090708 Primes whose decimal representation is a valid number in base 5 and interpreted as such is again a prime.

Original entry on oeis.org

2, 3, 23, 43, 131, 241, 313, 401, 1123, 1231, 1321, 2111, 2113, 2221, 2311, 3323, 4003, 4241, 4423, 10103, 10301, 10433, 11243, 11423, 12011, 12413, 13331, 14323, 14411, 20113, 20201, 20443, 21011, 21143, 21341, 21433, 22111, 22133, 22441, 23431, 24113, 24421, 24443, 30211, 31223
Offset: 1

Views

Author

Cino Hilliard, Jan 18 2004

Keywords

Examples

			23 is prime when read as base-10 number and also when read as base-5 number, 23 [base 5] = 13 [base 10].
		

Crossrefs

Programs

  • Magma
    [n:n in PrimesUpTo(32000)| Max(Intseq(n,10)) le 4 and IsPrime(Seqint(Intseq(Seqint(Intseq(n),5))))]; // Marius A. Burtea, Jun 30 2019
  • Mathematica
    Select[ FromDigits@# & /@ IntegerDigits[ Prime@ Range@ 270, 5], PrimeQ] (* Robert G. Wilson v, Jan 05 2014 *)
  • PARI
    fixBase(n, oldBase, newBase)=my(d=digits(n, oldBase), t=newBase-1); for(i=1, #d, if(d[i]>t, for(j=i, #d, d[j]=t); break)); fromdigits(d, newBase)
    list(lim)=my(v=List(), t); forprime(p=2, fixBase(lim\1, 10, 5), if(isprime(t=fromdigits(digits(p, 5), 10)), listput(v, t))); Vec(v) \\ Charles R Greathouse IV, Nov 07 2016
    

Extensions

Name, example and offset corrected by M. F. Hasler, Jan 03 2014
More terms from Alejandro J. Becerra Jr., Aug 13 2018

A267769 Numbers whose base-9 representation is a square when read in base 10.

Original entry on oeis.org

0, 1, 4, 15, 23, 33, 58, 73, 81, 100, 121, 185, 213, 265, 298, 324, 361, 400, 474, 509, 555, 643, 685, 751, 861, 914, 1093, 1153, 1215, 1288, 1354, 1481, 1554, 1705, 1783, 1863, 1945, 2029, 2210, 2301, 2488, 2584, 2673, 2773, 2875, 3101, 3210, 3424, 3538, 3682, 3802, 4038, 4154, 4281, 4450
Offset: 1

Views

Author

M. F. Hasler, Jan 20 2016

Keywords

Comments

Trivially includes powers of 81, since 81^k = 100..00_9 = 10^(2k) when read in base 10. Moreover, for any a(n) in the sequence, 81*a(n) is also in the sequence. One could call "primitive" the terms not of this form. These primitive terms include the subsequence 81^k + 2*9^k + 1 = (9^k+1)^2, k > 0, which yields A033934 when written in base 9.

Crossrefs

Cf. A267763 - A267768 for bases 3 through 8. The base-2 analog is A000302 = powers of 4.

Programs

  • Mathematica
    Select[Range[0, 5000], IntegerQ@ Sqrt@ FromDigits@ IntegerDigits[#, 9] &] (* Michael De Vlieger, Jan 24 2016 *)
  • PARI
    is(n,b=9,c=10)=issquare(subst(Pol(digits(n,b)),x,c))
    
  • Python
    A267769_list = [int(s, 9) for s in (str(i**2) for i in range(10**6)) if max(s) < '9'] # Chai Wah Wu, Jan 20 2016

A235473 Primes whose base-3 representation is also the base-4 representation of a prime.

Original entry on oeis.org

2, 43, 61, 67, 97, 103, 127, 139, 151, 157, 199, 211, 229, 277, 283, 331, 337, 349, 373, 379, 433, 439, 463, 499, 523, 571, 601, 607, 727, 751, 787, 823, 853, 883, 919, 991, 1063, 1087, 1117, 1213, 1249, 1327, 1381, 1429, 1483, 1531, 1567, 1597, 1627, 1759, 1783, 1867, 1999
Offset: 1

Views

Author

M. F. Hasler, Jan 12 2014

Keywords

Comments

This sequence is part of a two-dimensional array of sequences, given in the LINK, based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.
This is a subsequence of A045331 and A045375.

Examples

			43 = 1121_3 and 1121_4 = 89 are both prime, so 43 is a term.
		

Crossrefs

Cf. A235266, A235474, A152079, A235475 - A235479, A065720A036952, A065721 - A065727, A235394, A235395, A089971A020449, A089981, A090707 - A091924, A235461 - A235482. See the LINK for further cross-references.

Programs

  • Mathematica
    Select[Prime[Range[400]],PrimeQ[FromDigits[IntegerDigits[#,3],4]]&] (* Harvey P. Dale, Oct 16 2015 *)
  • PARI
    is(p,b=4,c=3)=isprime(vector(#d=digits(p,c),i,b^(#d-i))*d~)&&isprime(p) \\ Note: This code is only valid for b > c.

A267763 Numbers whose base-3 representation is a square when read in base 10.

Original entry on oeis.org

0, 1, 9, 16, 81, 100, 144, 235, 729, 784, 900, 961, 1296, 1369, 2115, 6561, 6724, 7056, 7225, 8100, 8649, 11664, 11881, 12321, 15985, 19035, 59049, 59536, 60516, 61009, 63504, 64009, 65025, 72900, 73441, 77841, 104976, 105625, 106929, 110889, 143865, 171315, 182428, 531441, 532900, 535824, 537289, 544644, 546121
Offset: 1

Views

Author

M. F. Hasler, Jan 20 2016

Keywords

Comments

Trivially includes powers of 9, since 9^k = 100..00_3 = 10^(2k) when read as a base-10 number. Moreover, for any a(n) in the sequence, 9*a(n) is also in the sequence. One could call "primitive" the terms not of this form; these would be 1, 16 = 121_3, 100 = 10201_3, 235 = 22201_3, 784 = 1002001_3, 961 = 1022121_3, ... These primitive terms include the subsequence 9^k + 2*3^k + 1, k > 0, which yields A033934 when written in base 3.

Crossrefs

Cf. A267764 - A267769 for bases 4 through 9. The base-2 analog is A000302 = powers of 4.

Programs

  • Magma
    [n: n in [0..10^6] | IsSquare(Seqint(Intseq(n, 3)))]; // Vincenzo Librandi, Dec 28 2016
  • Mathematica
    Select[Range[0, 600000], IntegerQ@Sqrt@FromDigits@IntegerDigits[#, 3] &] (* Vincenzo Librandi Dec 28 2016 *)
  • PARI
    is(n,b=3,c=10)=issquare(subst(Pol(digits(n,b)),x,c))
    
  • Python
    A267763_list = [int(d,3) for d in (str(i**2) for i in range(10**6)) if max(d) < '3'] # Chai Wah Wu, Mar 12 2016
    

A235479 Primes whose base-2 representation also is the base-9 representation of a prime.

Original entry on oeis.org

11, 13, 19, 41, 79, 109, 137, 151, 167, 191, 193, 199, 227, 239, 271, 307, 313, 421, 431, 433, 457, 487, 491, 521, 563, 613, 617, 659, 677, 709, 727, 757, 929, 947, 1009, 1033, 1051, 1249, 1483, 1693, 1697, 1709, 1721, 1831, 1951, 1979, 1987, 1993
Offset: 1

Views

Author

M. F. Hasler, Jan 12 2014

Keywords

Comments

This sequence is part of a two-dimensional array of sequences, given in the LINK, based on this same idea for any two different bases b, c > 1. Sequence A235265 and A235266 are the most elementary ones in this list. Sequences A089971, A089981 and A090707 through A090721, and sequences A065720 - A065727, follow the same idea with one base equal to 10.
For further motivation and cross-references, see sequence A235265 which is the main entry for this whole family of sequences.
A subsequence of A027697, A050150, A062090 and A176620.

Examples

			11 = 1011_2 and 1011_9 = 6571 are both prime, so 11 is a term.
		

Crossrefs

Cf. A235466A077723, A235266, A152079, A235475 - A235478, A065720A036952, A065721 - A065727, A089971A020449, A089981, A090707 - A091924, A235394, A235395, A235461 - A235482. See the LINK for further cross-references.

Programs

  • PARI
    is(p,b=9)=isprime(vector(#d=binary(p),i,b^(#d-i))*d~)&&isprime(p)

A267490 Primes whose base-8 representation is a perfect square in base 10.

Original entry on oeis.org

149, 241, 661, 1409, 2593, 3733, 6257, 7793, 15313, 23189, 25601, 26113, 30497, 34337, 44053, 49057, 78577, 92821, 95009, 108529, 115861, 132757, 162257, 178417, 183377, 223381, 235541, 242197, 266261, 327317, 345749, 426389, 525461, 693397, 719893, 729713, 805397, 814081, 903841
Offset: 1

Views

Author

Christopher Cormier, Jan 16 2016

Keywords

Comments

Subsequence of primes in A267768. - M. F. Hasler, Jan 20 2016

Examples

			a(1) = 149 because 149 is 225 in base 8, and 225 is 15^2 in base 10.
		

Crossrefs

For primes which are primes in other bases, see A235265, A235266, A152079, A235461 - A235482, A065720A036952, A065721 - A065727, A235394, A235395, A089971A020449, A089981, A090707 - A091924.

Programs

  • Magma
    [n:n in PrimesUpTo(1000000)| IsSquare(Seqint(Intseq(n,8)))]; // Marius A. Burtea, Jun 30 2019
  • Mathematica
    Select[Prime@ Range[10^5], IntegerQ@ Sqrt@ FromDigits@ IntegerDigits[#, 8] &] (* Michael De Vlieger, Jan 16 2016 *)
  • PARI
    listp(nn) = {forprime(p=1, nn, d = digits(p, 8); pd = Pol(d); if (issquare(subst(pd, x, 10)), print1(p, ", ")););} \\ Michel Marcus, Jan 16 2016
    
  • PARI
    is(n,b=8,c=10)={issquare(subst(Pol(digits(n,b)),x,c))&&isprime(n)} \\ M. F. Hasler, Jan 20 2016
    
  • Python
    from sympy import isprime
    A267490_list = [int(s,8) for s in (str(i**2) for i in range(10**6)) if max(s) < '8' and isprime(int(s,8))] # Chai Wah Wu, Jan 20 2016
    
Previous Showing 11-20 of 73 results. Next