cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A376361 The number of distinct prime factors of the powerful numbers.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 3, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 3, 3, 1, 2, 2, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 2, 3, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Sep 21 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[k_] := Module[{e = If[k == 1, {}, FactorInteger[k][[;; , 2]]]}, If[AllTrue[e, # > 1 &], Length[e], Nothing]]; Array[f, 3500]
  • PARI
    lista(kmax) = {my(e, is); for(k = 1, kmax, e = factor(k)[, 2]; is = 1; for(i = 1, #e, if(e[i] == 1, is = 0; break)); if(is, print1(#e, ", ")));}

Formula

a(n) = A001221(A001694(n)).
Sum_{A001694(k) <= x} a(k) = c * sqrt(x) * (log(log(x)) + B - log(2) + L(2, 3) - L(2, 4)) + O(sqrt(x)/log(x)), where c = zeta(3/2)/zeta(3) (A090699), B is Mertens's constant (A077761), L(h, r) = Sum_{p prime} 1/(p^(r/h - 1) * (p - p^(1 - 1/h) + 1)), L(2, 3) = 1.07848461669337535407..., and L(2, 4) = 0.57937575954505652569... (Das et al., 2024).

A376362 The number of unitary divisors that are squares of primes applied to the powerful numbers.

Original entry on oeis.org

0, 1, 0, 1, 0, 1, 0, 0, 2, 1, 0, 1, 0, 2, 1, 1, 0, 0, 1, 1, 2, 1, 0, 2, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 0, 0, 1, 2, 0, 1, 1, 1, 0, 3, 1, 1, 1, 0, 0, 2, 1, 1, 2, 2, 0, 1, 0, 1, 1, 1, 2, 2, 1, 1, 1, 0, 3, 2, 1, 1, 0, 0, 1, 0, 2, 0, 0, 1, 1, 1, 0, 1, 0, 2, 2, 1, 0, 1, 1, 1, 2, 1, 0, 1, 1, 2, 1, 2, 0
Offset: 1

Views

Author

Amiram Eldar, Sep 21 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[k_] := Module[{e = If[k == 1, {}, FactorInteger[k][[;; , 2]]]}, If[AllTrue[e, # > 1 &], Count[e, 2], Nothing]]; Array[f, 3500]
  • PARI
    lista(kmax) = {my(e, is); for(k = 1, kmax, e = factor(k)[, 2]; is = 1; for(i = 1, #e, if(e[i] == 1, is = 0; break)); if(is, print1(#select(x -> x == 2, e), ", ")));}

Formula

a(n) = A369427(A001694(n)).
Sum_{A001694(k) <= x} a(k) = c * sqrt(x) * (log(log(x)) + B - log(2) - L(2, 4)) + O(sqrt(x)/log(x)), where c = zeta(3/2)/zeta(3) (A090699), B is Mertens's constant (A077761), L(h, r) = Sum_{p prime} 1/(p^(r/h - 1) * (p - p^(1 - 1/h) + 1)), and L(2, 4) = 0.57937575954505652569... (Das et al., 2025).

A244000 Decimal expansion of the Bateman-Grosswald constant zeta(2/3)/zeta(2), a constant (negated) arising in the asymptotic evaluation of the number of square-full numbers (also called "powerful" numbers).

Original entry on oeis.org

1, 4, 8, 7, 9, 5, 0, 6, 6, 3, 5, 3, 2, 2, 7, 2, 6, 3, 1, 5, 9, 8, 7, 4, 9, 1, 1, 2, 5, 7, 8, 7, 1, 3, 4, 9, 8, 7, 9, 6, 1, 0, 8, 5, 3, 8, 1, 2, 1, 0, 4, 4, 2, 5, 1, 4, 2, 4, 6, 8, 8, 1, 7, 2, 8, 3, 5, 6, 1, 2, 9, 0, 2, 1, 7, 2, 2, 6, 0, 1, 1, 5, 7, 0, 1, 4, 2, 4, 3, 9, 8, 7, 9, 4, 5, 0, 8, 6, 8, 9, 5
Offset: 1

Views

Author

Jean-François Alcover, Jun 17 2014

Keywords

Examples

			-1.4879506635322726315987491125787134987961...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.6 Niven's constant, p. 113.

Crossrefs

Cf. A001694, A033150, A059956 (analog for squarefree integers), A090699.

Programs

  • Mathematica
    RealDigits[ Zeta[2/3] / Zeta[2], 10, 101] // First

A361936 Indices of the squares in the sequence of powerful numbers (A001694).

Original entry on oeis.org

1, 2, 4, 5, 6, 9, 10, 11, 13, 14, 16, 19, 20, 21, 24, 26, 28, 29, 31, 33, 35, 36, 39, 40, 41, 44, 45, 46, 48, 50, 51, 55, 56, 59, 60, 61, 65, 67, 68, 70, 71, 73, 75, 76, 79, 81, 84, 85, 87, 88, 90, 92, 94, 96, 97, 100, 102, 104, 107, 109, 110, 111, 114, 116, 117, 119, 120
Offset: 1

Views

Author

Amiram Eldar, Mar 31 2023

Keywords

Comments

Equivalently, the number of powerful numbers that do not exceed n^2.
The asymptotic density of this sequence is zeta(3)/zeta(3/2) = 1/A090699 = 0.460139... .
If k is a term of A336175 then a(k) and a(k+1) are consecutive integers, i.e., a(k+1) = a(k) + 1.

Crossrefs

Programs

  • Mathematica
    Position[Select[Range[5000], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 1 &], _?(IntegerQ[Sqrt[#]] &)] // Flatten
  • PARI
    lista(kmax) = {my(c = 0); for(k = 1, kmax, if(ispowerful(k), c++); if(issquare(k), print1(c, ", "))); }
    
  • Python
    from math import isqrt
    from sympy import integer_nthroot, factorint
    def A361936(n):
        m = n**2
        return int(sum(isqrt(m//k**3) for k in range(1, integer_nthroot(m, 3)[0]+1) if all(d<=1 for d in factorint(k).values()))) # Chai Wah Wu, Sep 10 2024

Formula

a(n) = A217038(n^2).
a(n+1) - a(n) = A119241(n) + 1.
a(n) = (zeta(3/2)/zeta(3)) * n + O(n^(2/3)).

A370786 Powerful numbers with an odd number of prime factors (counted with multiplicity).

Original entry on oeis.org

8, 27, 32, 72, 108, 125, 128, 200, 243, 288, 343, 392, 432, 500, 512, 648, 675, 800, 968, 972, 1125, 1152, 1323, 1331, 1352, 1372, 1568, 1728, 1800, 2000, 2048, 2187, 2197, 2312, 2592, 2700, 2888, 3087, 3125, 3200, 3267, 3528, 3872, 3888, 4232, 4500, 4563, 4608
Offset: 1

Views

Author

Amiram Eldar, Mar 02 2024

Keywords

Comments

Jakimczuk (2024) proved:
The number of terms that do not exceed x is N(x) = c * sqrt(x) + o(sqrt(x)) where c = (zeta(3/2)/zeta(3) - 1/zeta(3/2))/2 = 0.895230... .
The relative asymptotic density of this sequence within the powerful numbers is (1 - zeta(3)/(zeta(3/2)^2))/2 = 0.411930... .
In general, the relative asymptotic density of the s-full numbers (numbers whose exponents in their prime factorization are all >= s) with an odd number of prime factors (counted with multiplicity) within the s-full numbers is smaller than 1/2 when s is odd.

Crossrefs

Intersection of A001694 and A026424.
Complement of A370785 within A001694.
A370788 is a subsequence.

Programs

  • Mathematica
    q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, AllTrue[e, # > 1 &] && OddQ[Total[e]]]; Select[Range[2500], q]
  • PARI
    is(n) = {my(e = factor(n)[, 2]); n > 1 && vecmin(e) > 1 && vecsum(e)%2;}

A084371 Squarefree kernels of powerful numbers (A001694).

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 3, 2, 6, 7, 2, 6, 3, 10, 6, 11, 5, 2, 6, 13, 14, 10, 6, 15, 3, 2, 6, 17, 6, 7, 19, 14, 10, 6, 21, 22, 10, 2, 23, 6, 5, 6, 15, 26, 3, 14, 10, 29, 6, 30, 31, 22, 6, 10, 2, 33, 15, 6, 34, 35, 6, 21, 11, 26, 37, 14, 38, 39, 14, 10, 41, 6, 42, 30, 43, 22, 6, 10
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 23 2003

Keywords

Examples

			A001694(11) = 64 = 2^6 -> a(11) = 2,
A001694(12) = 72 = 2^3 * 3^2 -> a(12) = 2*3 = 6,
A001694(13) = 81 = 3^4 -> a(13) = 3.
		

Crossrefs

Programs

  • Mathematica
    s = {1}; Do[f = FactorInteger[n]; If[Min @ f[[;;, 2]] > 1, AppendTo[s, Times @@ f[[;;, 1]]]], {n, 2, 10^4}]; s (* Amiram Eldar, Aug 22 2019 *)
  • PARI
    rad(n) = factorback(factorint(n)[, 1]); \\ A007947
    lista(nn) = apply(x->rad(x), select(x->ispowerful(x), [1..nn])); \\ Michel Marcus, Aug 22 2019
    
  • Python
    from math import prod, isqrt
    from sympy import mobius, integer_nthroot, primefactors
    def A084371(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l, j = n+x-squarefreepi(integer_nthroot(x,3)[0]), 0, isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            return c+l
        return prod(primefactors(bisection(f,n,n))) # Chai Wah Wu, Sep 13 2024

Formula

a(n) = A007947(A001694(n)).
From Amiram Eldar, May 13 2023: (Start)
Sum_{A001694(k) < x} a(k) = (1/2) * x + o(x) (Jakimczuk, 2017). [corrected Sep 21 2024]
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(3)/zeta(3/2))^2/2 = 0.1058641473... . (End)

A174172 Partials sums of A001694.

Original entry on oeis.org

1, 5, 13, 22, 38, 63, 90, 122, 158, 207, 271, 343, 424, 524, 632, 753, 878, 1006, 1150, 1319, 1515, 1715, 1931, 2156, 2399, 2655, 2943, 3232, 3556, 3899, 4260, 4652, 5052, 5484, 5925, 6409, 6909, 7421, 7950, 8526, 9151, 9799, 10474, 11150, 11879, 12663
Offset: 1

Views

Author

Jonathan Vos Post, Mar 10 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate @ Select[Range[1000], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 1 &] (* Amiram Eldar, Jan 30 2023 *)
  • PARI
    lista(kmax) = {my(s = 0); for(k = 1, kmax, if(k==1 || vecmin(factor(k)[, 2]) > 1, s += k; print1(s, ", ")));} \\ Amiram Eldar, May 13 2023

Formula

a(n) = Sum_{i=1..n} A001694(i).
a(n) ~ (zeta(3)^2/(3*zeta(3/2)^2)) * n^3. - Amiram Eldar, Jan 30 2023
a(n) = c * A001694(n)^(3/2) + o(A001694(n)^(3/2)), where c = zeta(3/2)/(3*zeta(3)) = 0.7244181041... (Jakimczuk, 2017). - Amiram Eldar, May 13 2023

A370785 Powerful numbers with an even number of prime factors (counted with multiplicity).

Original entry on oeis.org

1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 216, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 864, 900, 961, 1000, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 1944, 2025, 2116, 2209
Offset: 1

Views

Author

Amiram Eldar, Mar 02 2024

Keywords

Comments

Jakimczuk (2024) proved:
The number of terms that do not exceed x is N(x) = c * sqrt(x) + o(sqrt(x)) where c = (zeta(3/2)/zeta(3) + 1/zeta(3/2))/2 = 1.278023... .
The relative asymptotic density of this sequence within the powerful numbers is (1 + zeta(3)/(zeta(3/2)^2))/2 = 0.588069... .
In general, the relative asymptotic density of the s-full numbers (numbers whose exponents in their prime factorization are all >= s) with an even number of prime factors (counted with multiplicity) within the s-full numbers is larger than 1/2 when s is even.

Crossrefs

Intersection of A001694 and A028260.
Complement of A370786 within A001694.
A370787 is a subsequence.

Programs

  • Mathematica
    q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, n == 1 || AllTrue[e, # > 1 &] && EvenQ[Total[e]]]; Select[Range[2500], q]
  • PARI
    is(n) = {my(e = factor(n)[, 2]); n == 1 || (vecmin(e) > 1 && !(vecsum(e)%2));}

A380266 a(n) is the numerator of the mean value of A051904(k) at the range k = 1..n.

Original entry on oeis.org

0, 1, 2, 1, 1, 1, 1, 5, 4, 13, 14, 5, 16, 17, 6, 11, 23, 4, 25, 13, 9, 14, 29, 5, 32, 33, 4, 37, 38, 13, 40, 45, 46, 47, 48, 25, 51, 26, 53, 27, 55, 4, 57, 29, 59, 30, 61, 31, 64, 13, 22, 67, 68, 23, 14, 71, 24, 73, 74, 5, 76, 77, 26, 21, 17, 43, 87, 22, 89, 9
Offset: 1

Views

Author

Amiram Eldar, Jan 18 2025

Keywords

Examples

			Fractions begin with 0, 1/2, 2/3, 1, 1, 1, 1, 5/4, 4/3, 13/10, 14/11, 5/4, ...
		

Crossrefs

Cf. A051904, A090699, A380267 (denominators).

Programs

  • Mathematica
    f[n_] := Min[FactorInteger[n][[;;, 2]]]; f[1] = 0; With[{m = 100}, Numerator[Accumulate[Array[f, m]] / Range[m]]]
  • PARI
    lista(nmax) = {my(s = 0); print1(0, ", "); for(n = 2, nmax, s += vecmin(factor(n)[,2]);  print1(numerator(s/n), ", "));}

Formula

a(n) = numerator((Sum_{k=1..n} A051904(k))/n).
a(n)/A380267(n) = 1 + c/sqrt(n) + o(1/sqrt(n)), where c = zeta(3/2)/zeta(3) (A090699).

A217038 Number of powerful numbers < n.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12
Offset: 1

Views

Author

Jayanta Basu, Apr 07 2013

Keywords

Comments

Powerful numbers are given by A001694.

Examples

			a(10)=4 since there are exactly 4 powerful numbers (1,4,8,9) less than 10.
		

Crossrefs

Partial sums of A112526.

Programs

  • Mathematica
    PowQ[n_] := Cases[FactorInteger[n], {p_, 1} -> p] == {}; Q[n_] := Length[Join[{1}, Select[Range[n - 1], PowQ[#] &]]] ; Join[{0}, Table[Q[n], {n, 2, 100}]]
  • PARI
    g(n,fe=factor(n)[,2])=prod(i=1,#fe, (fe[i]+2)\2 - (fe[i]+2)\3)
    a(n)=my(v=List(),t); n--; for(m=2,sqrtnint(n,6), for(y=1,sqrtnint(n\m^6,3), t=(m^2*y)^3; for(x=1,sqrtint(n\t), listput(v,t*x^2)))); v=Set(v); sum(y=1,sqrtnint(n,3), sqrtint(n\y^3))-sum(i=1,#v, g(v[i])-1) \\ Charles R Greathouse IV, Jul 31 2017
    
  • PARI
    first(n)=my(v=vector(n),s=1); if(n>1, v[2]=1); forfactored(k=2,n-1, if(vecmin(k[2][,2])>1, s++); v[k[1]+1]=s); v \\ Charles R Greathouse IV, Jul 31 2017
    
  • PARI
    a(n)=my(s); n--; forsquarefree(k=1,sqrtnint(n,3), s+=sqrtint(n\k[1]^3)); s \\ Charles R Greathouse IV, Dec 12 2022
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A217038(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        c, l = 0, 0
        j = isqrt(n-1)
        while j>1:
            k2 = integer_nthroot((n-1)//j**2,3)[0]+1
            w = squarefreepi(k2-1)
            c += j*(w-l)
            l, j = w, isqrt((n-1)//k2**3)
        c += squarefreepi(integer_nthroot(n-1,3)[0])-l
        return c # Chai Wah Wu, Sep 12 2024

Formula

a(n) = (zeta(3/2)/zeta(3)) * sqrt(n) + O(n^(1/3)) (Erdős and Szekeres, 1935; Golomb, 1970). - Amiram Eldar, Apr 06 2023
Previous Showing 11-20 of 29 results. Next