cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A273445 a(n) is the number of solutions of the equation n = A001617(k).

Original entry on oeis.org

15, 12, 8, 11, 7, 14, 4, 13, 7, 12, 4, 15, 4, 9, 6, 10, 5, 16, 2, 20, 3, 14, 7, 11, 2, 13, 5, 11, 3, 14, 3, 9, 6, 13, 3, 17, 3, 14, 4, 10, 4, 20, 3, 15, 3, 12, 1, 15, 2, 20, 4, 11, 3, 13, 3, 16, 3, 12, 3, 15, 3, 12, 5, 9, 4, 15, 2, 14, 5, 17, 3, 13
Offset: 0

Views

Author

Gheorghe Coserea, May 22 2016

Keywords

Comments

The zeros of the sequence are given by A054729. The first five zeros of the sequence have indexes 150, 180, 210, 286, 304.

Examples

			For n = 0 the a(0) = 15 solutions are:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 25 (A091401).
For n = 1 the a(1) = 12 solutions are:
11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, 49 (A091403).
For n = 2 the a(2) = 8 solutions are:
22, 23, 26, 28, 29, 31, 37, 50 (A091404).
		

Crossrefs

Programs

  • Mathematica
    (* b = A001617 *) nmax = 71;
    b[n_] := b[n] = If[n < 1, 0, 1 + Sum[ MoebiusMu[ d]^2 n/d / 12 - EulerPhi[ GCD[ d, n/d]] / 2, {d, Divisors[n]}] - Count[(#^2 - # + 1)/n& /@ Range[n], ?IntegerQ]/3 -Count[(#^2 + 1)/n& /@ Range[n], ?IntegerQ]/4];
    Clear[f];
    f[m_] := f[m] = Module[{}, A001617 = Array[b, m]; a[n_] := Count[A001617, n]; Table[a[n], {n, 0, nmax}]];
    f[m = nmax]; f[m = m + nmax];
    While[Print["m = ", m]; f[m] != f[m - nmax], m = m + nmax];
    A273445 = f[m] (* Jean-François Alcover, Dec 16 2018, using Michael Somos' code for A001617 *)
  • PARI
    A000089(n) = {
      if (n%4 == 0 || n%4 == 3, return(0));
      if (n%2 == 0, n \= 2);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k,1] % 4 == 3, 0, 2));
    };
    A000086(n) = {
      if (n%9 == 0 || n%3 == 2, return(0));
      if (n%3 == 0, n \= 3);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k,1] % 3 == 2, 0, 2));
    };
    A001615(n) = {
      my(f = factor(n), fsz = matsize(f)[1],
         g = prod(k=1, fsz, (f[k,1]+1)),
         h = prod(k=1, fsz, f[k,1]));
      return((n*g)\h);
    };
    A001616(n) = {
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, f[k,1]^(f[k,2]\2) + f[k,1]^((f[k,2]-1)\2));
    };
    A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;
    seq(n) = {
      my(a = vector(n+1,g,0), bnd = 12*n + 18*sqrtint(n) + 100, g);
      for (k = 1, bnd, g = A001617(k);
           if (g <= n, a[g+1]++));
      return(a);
    };
    seq(72)

Formula

a(n) = card {k, n = A001617(k)}.

A276019 n^2 * a(n) = (88*n^2 - 132*n + 54) * a(n-1) - 500*(2*n-3)^2 * a(n-2), with a(0)=1, a(1)=10.

Original entry on oeis.org

1, 10, 230, 6500, 199750, 6366060, 204990300, 6539387400, 202432551750, 5897526329500, 151804596385780, 2807347223915000, -15232296765302500, -5584390420089725000, -416025902106681525000, -24002385182809425846000, -1235898175219724085176250, -59486502796252242452122500, -2731496764897242177292037500, -120874274801920384164027025000, -5181210157044172846922944311500
Offset: 0

Views

Author

Gheorghe Coserea, Aug 23 2016

Keywords

Examples

			A(x) = 1 + 10*x + 230*x^2 + 6500*x^3 + ... is the g.f.
		

Crossrefs

Programs

  • PARI
    seq(N) = {
      a = vector(N); a[1] = 10; a[2] = 230;
      for (n = 3, N, a[n] = ((88*n^2 - 132*n + 54)*a[n-1] - 500*(2*n-3)^2 * a[n-2])/n^2);
      concat(1, a);
    };
    seq(20)

Formula

n^2*a(n) = (88*n^2-132*n+54)*a(n-1) - 500*(2*n-3)^2*a(n-2), with a(0)=1, a(1)=10.
0 = 4*x*(x^2+22*x+125)*y'' + (8*x^2+132*x+500)*y' + (x+10)*y, where y(x) = A(x/-500).

A276020 n^2 * a(n) = 2*(17*n^2-21*n+9) * a(n-1) - 4*(112*n^2-280*n+197) * a(n-2) + 40*(68*n^2-256*n+251) * a(n-3) - 1600*(2*n-5)^2 * a(n-4), with a(0)=1, a(1)=10, a(2)=90, a(3)=780.

Original entry on oeis.org

1, 10, 90, 780, 6630, 55820, 469220, 3967000, 33951750, 295553500, 2622492940, 23701797800, 217528135900, 2018704327800, 18862262001800, 176834576018480, 1659586559786950, 15575074941839100, 146164364053448700, 1372547571923176200, 12910383388613518580, 121770360957324308200, 1152648798132152849400
Offset: 0

Views

Author

Gheorghe Coserea, Aug 23 2016

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 10; a[2] = 90; a[3] = 780; a[n_] := a[n] = (40(68n^2 - 256n + 251)a[n-3] - 4(112n^2 - 280n + 197)a[n-2] + 2(17n^2 - 21n + 9)a[n-1] - 1600(2n - 5)^2 a[n-4])/n^2;
    Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Oct 19 2018 *)
  • PARI
    seq(N) = {
      my(a = vector(N));
      a[1] = 10; a[2] = 90; a[3] = 780; a[4] = 6630;
      for (n = 5, N,
        my(t1 = 2*(17*n^2 - 21*n + 9)*a[n-1] - 4*(112*n^2 - 280*n + 197)*a[n-2],
           t2 = 40*(68*n^2 - 256*n + 251) * a[n-3] - 1600*(2*n-5)^2 *a[n-4]);
        a[n] = (t1 + t2)/n^2);
      concat(1,a);
    };
    seq(22)

Formula

n^2*a(n) = 2*(17*n^2-21*n+9)*a(n-1) - 4*(112*n^2-280*n+197)*a(n-2) + 40*(68*n^2-256*n+251)*a(n-3) - 1600*(2*n-5)^2 *a(n-4), with a(0)=1, a(1)=10, a(2)=90, a(3)=780.
0 = 4*x*(x+4)*(x+5)*(x^2+8*x+20)*y'' + 4*(4*x^4+55*x^3+280*x^2+600*x+400)*y' + (9*x^3+95*x^2+340*x+400)*y, where y(x) = A(x/-40).
a(n) ~ 2^n * 5^(n+5/4) / (Pi*n). - Vaclav Kotesovec, Aug 25 2016

A276021 n^2 * a(n) = 3*(39*n^2 - 52*n + 20) * a(n-1) - 441*(3*n-4)^2 * a(n-2), with a(0)=1, a(1)=21.

Original entry on oeis.org

1, 21, 693, 23940, 734643, 13697019, -494620749, -83079255420, -6814815765975, -444980496382695, -25071954462140859, -1226361084729855984, -49426887403935395172, -1287188243957889124740, 23935850133162849385308, 6798920856226697943604944, 650950202721260061404073891
Offset: 0

Views

Author

Gheorghe Coserea, Aug 23 2016

Keywords

Examples

			A(x) = 1 + 21*x + 693*x^2 + 23940*x^3 + ... is the g.f.
		

Crossrefs

Programs

  • Magma
    I:=[21,693]; [1] cat [n le 2 select I[n] else (3*(39*n^2-52*n+20)*Self(n-1)-441*(3*n-4)^2*Self(n-2)) div n^2: n in [1..30]]; // Vincenzo Librandi, Aug 25 2016
  • Mathematica
    a[0] = 1; a[1] = 21; a[n_] := a[n] = (3(39n^2 - 52n + 20) a[n-1] - 441(3n - 4)^2 a[n-2])/n^2;
    Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Oct 19 2018 *)
  • PARI
    seq(N) = {
      my(a = vector(N)); a[1] = 21; a[2] = 693;
      for (n=3, N,
           a[n] = (3*(39*n^2 - 52*n + 20) * a[n-1] - 441*(3*n-4)^2 * a[n-2])/n^2);
      concat(1,a);
    };
    seq(17)
    

Formula

n^2 * a(n) = 3*(39*n^2-52*n+20) * a(n-1) - 441*(3*n-4)^2 * a(n-2), with a(0)=1, a(1)=21.
0 = 9*x*(x^2+13*x+49)*y'' + (21*x^2 + 195*x + 441)*y' + (4*x+21)*y, where y(x) = A(x/-441).

A276022 n^2 * a(n) = 3*(5*n^2 - 5*n + 2) * a(n-1) - 16*(5*n^2 - 10*n + 6) * a(n-2) + 36*(5*n^2 - 15*n + 12) * a(n-3) - 144*(n-2)^2 * a(n-4), with a(0)=1, a(1)=6, a(2)=30, a(3)=144.

Original entry on oeis.org

1, 6, 30, 144, 690, 3348, 16536, 83232, 426618, 2223180, 11756052, 62959680, 340881792, 1862954784, 10262937600, 56926831104, 317632207194, 1781352834300, 10034760283356, 56748881420640, 322033934657628, 1833043230774360, 10462349697348528, 59861990921495616
Offset: 0

Views

Author

Gheorghe Coserea, Aug 23 2016

Keywords

Examples

			A(x) = 1 + 6*x + 30*x^2 + 144*x^3 + ... is the g.f.
		

Crossrefs

Programs

  • Magma
    I:=[6,30,144,690]; [1] cat [n le 4 select I[n] else (3*(5*n^2-5*n+2)*Self(n-1)-16*(5*n^2-10*n+6)*Self(n-2)+36*(5*n^2-15*n+12)*Self(n-3)-144*(n-2)^2*Self(n-4)) div n^2: n in [1..30]]; // Vincenzo Librandi, Aug 25 2016
  • Mathematica
    a[0] = 1; a[1] = 6; a[2] = 30; a[3] = 144; a[n_] := a[n] = (3(5n^2 - 5n + 2) a[n-1] - 16(5n^2 - 10n + 6)a[n-2] + 36(5n^2 - 15n + 12) a[n-3] - 144(n-2)^2 a[n-4])/n^2;
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Oct 19 2018 *)
  • PARI
    seq(N) = {
      my(a = vector(N)); a[1] = 6; a[2] = 30; a[3] = 144; a[4] = 690;
      for (n=5, N,
           my(t1 = 3*(5*n^2 - 5*n + 2)*a[n-1] - 16*(5*n^2 - 10*n + 6)*a[n-2],
              t2 = 36*(5*n^2 - 15*n + 12)*a[n-3] - 144*(n-2)^2 * a[n-4]);
           a[n] = (t1+t2)/n^2);
      concat(1,a);
    };
    seq(25)
    

Formula

n^2 * a(n) = 3*(5*n^2 - 5*n + 2) * a(n-1) - 16*(5*n^2 - 10*n + 6) * a(n-2) + 36*(5*n^2 - 15*n + 12) * a(n-3) - 144*(n-2)^2 * a(n-4), with a(0)=1, a(1)=6, a(2)=30, a(3)=144.
0 = x*(x+2)*(x+3)*(x+4)*(x+6)*y'' + (5*x^4 + 60*x^3 + 240*x^2 + 360*x + 144)*y' + 4*(x^2+6*x+6)*(x+3)*y, where y(x) = A(x/-12).
a(n) ~ 2^n * 3^(n+3/2) / (Pi*n). - Vaclav Kotesovec, Aug 25 2016

A276177 n^2 * a(n) = 6*(66*n^2 - 94*n + 41) * a(n-1) - 36*(2016*n^2 - 5712*n + 4387) * a(n-2) + 50544*(132*n^2 - 560*n + 609) * a(n-3) - 7884864*(6*n-17)^2*a(n-4), with a(0)=1, a(1)=78, a(2)=4446, a(3)=20124.

Original entry on oeis.org

1, 78, 4446, 20124, -38185290, -6138851004, -560711991060, -21068540562888, 3057536757534246, 744702083933794740, 85203074089262120004, 5052846560269468159368, -180318018879496001303748, -86176724948835065345458008, -11276003918572185562671306600, -751248675388448553292016521104
Offset: 0

Views

Author

Gheorghe Coserea, Aug 23 2016

Keywords

Examples

			A(x) = 1 + 78*x + 4446*x^2 + 20124*x^3 + ... is the g.f.
		

Crossrefs

Programs

  • Magma
    I:=[78,4446,20124,-38185290]; [1] cat [n le 4 select I[n] else (6*(66*n^2-94*n+41)*Self(n-1)-36*(2016*n^2-5712*n+4387)*Self(n-2)+50544*(132*n^2-560*n+ 609)*Self(n-3)-7884864*(6*n-17)^2*Self(n-4)) div n^2: n in [1..30]]; // Vincenzo Librandi, Aug 25 2016
  • Mathematica
    a[0] = 1; a[1] = 78; a[2] = 4446; a[3] = 20124; a[n_] := a[n] = (6(66n^2 - 94n + 41) a[n-1] - 36(2016n^2 - 5712n + 4387)a[n-2] + 50544(132n^2 - 560n + 609)a[n-3] - 7884864(6n - 17)^2 a[n-4])/n^2;
    Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Oct 19 2018 *)
  • PARI
    seq(N) = {
      my(a = vector(N));
      a[1] = 78; a[2] = 4446; a[3] = 20124; a[4] = -38185290;
      for (n = 5, N,
           my(t1 = 6*(66*n^2 - 94*n + 41) * a[n-1],
              t2 = -36*(2016*n^2 - 5712*n + 4387) * a[n-2],
              t3 = 50544*(132*n^2 - 560*n + 609) * a[n-3],
              t4 = -7884864*(6*n-17)^2 * a[n-4]);
           a[n] = (t1 + t2 + t3 + t4)/n^2);
      concat(1,a);
    };
    seq(17)
    

Formula

n^2 * a(n) = 6*(66*n^2 - 94*n + 41) * a(n-1) - 36*(2016*n^2 - 5712*n + 4387) * a(n-2) + 50544*(132*n^2 - 560*n + 609) * a(n-3) - 7884864*(6*n-17)^2*a(n-4), with a(0)=1, a(1)=78, a(2)=4446, a(3)=20124.
0 = 36*x*(x^2 + 5*x + 13)*(x^2 + 6*x + 13)*y'' + 12*(10*x^4 + 91*x^3 + 364*x^2 + 676*x + 507)*y' + (49*x^3 + 351*x^2 + 1027*x + 1014)*y, where y(x) = A(x/-468).

A276178 G.f.: 1/AGM(1, (1-4*x)^2).

Original entry on oeis.org

1, 4, 12, 32, 84, 240, 784, 2816, 10404, 38096, 137456, 493440, 1783376, 6532288, 24245568, 90814464, 341776164, 1289126160, 4870386736, 18439692928, 70004793936, 266551445952, 1017708956224, 3894679004160, 14932998810896, 57349426579264, 220574904103872, 849571289810432
Offset: 0

Views

Author

Gheorghe Coserea, Aug 23 2016

Keywords

Examples

			A(x) = 1 + 4*x + 12*x^2 + 32*x^3 + ... is the g.f.
		

Crossrefs

Programs

  • Mathematica
    a[n_] = DifferenceRoot[Function[{a, n}, {(-80 n^2 - 400n - 512) a[n+1] + (40n^2 + 240n + 368) a[n+2] + (-10n^2 - 70n - 124) a[n+3] + 64(n+2)^2 a[n] + (n+4)^2 a[n+4] == 0, a[0] == 1, a[1] == 4, a[2] == 12, a[3] == 32}]][n];
    Table[a[n], {n, 0, 27}]
    (* or: *)
    Series[1/FunctionExpand[ArithmeticGeometricMean[1, (1-4x)^2], 1-4x > 0], {x, 0, 28}] // CoefficientList[#, x]& (* Jean-François Alcover, Dec 18 2018 *)
  • PARI
    N=34; x='x + O('x^N); Vec(1/agm(1, (1-4*x)^2))

Formula

G.f.: 1/agm(1, (1-4*x)^2).
0 = x*(x+2)*(x+4)*(x^2 + 4*x + 8) * y'' + (5*x^4 + 40*x^3 + 120*x^2 + 160*x + 64) * y' + 4*(x+2)^3 * y, where y(x) = A(x/-8).
From Vaclav Kotesovec, Aug 25 2016: (Start)
Recurrence: n^2*a(n) = 2*(5*n^2 - 5*n + 2)*a(n-1) - 8*(5*n^2 - 10*n + 6)*a(n-2) + 16*(5*n^2 - 15*n + 12)*a(n-3) - 64*(n-2)^2*a(n-4).
a(n) ~ 2^(2*n+2)/(Pi*n).
(End)

A276179 n^2 * a(n) = 2*(7*n^2 - 7*n + 3)*a(n-1) - 12*(7*n^2 - 14*n + 9)*a(n-2) + 39*(7*n^2 - 21*n + 18) * a(n-3) - 72*(7*n^2 - 28*n + 30)*a(n-4) + 72*(7*n^2 - 35*n + 45) * a(n-5) - 216*(n-3)^2 * a(n-6), with a(0)=1, a(1)=6, a(2)=24, a(3)=78, a(4)=216, a(5)=504.

Original entry on oeis.org

1, 6, 24, 78, 216, 504, 906, 756, -2808, -17832, -57312, -104832, 81882, 1734156, 9360576, 35755956, 106475472, 232967664, 215497680, -1178534304, -8734303296, -36146763648, -108833048064, -220247838720, -46688571558, 2220777704700, 13473296923536, 53523581091900
Offset: 0

Views

Author

Gheorghe Coserea, Aug 24 2016

Keywords

Examples

			A(x) = 1 + 6*x + 24*x^2 + 78*x^3 + 216*x^4 + 504*x^5 + 906*x^6 + ... is the g.f.
		

Crossrefs

Programs

  • Magma
    I:=[6,24,78,216,504,906]; [1] cat [n le 6 select I[n] else (2*(7*n^2-7*n+3)*Self(n-1)-12*(7*n^2-14*n+9)*Self(n-2)+39*(7*n^2-21*n+18)*Self(n-3)-72*(7*n^2-28*n+30)*Self(n-4)+72*(7*n^2-35*n+45)*Self(n-5)-216*(n-3)^2*Self(n-6)) div n^2: n in [1..30]]; // Vincenzo Librandi, Aug 25 2016
  • PARI
    seq(N) = {
      my(a = vector(N));
      a[1] = 6; a[2] = 24; a[3] = 78; a[4] = 216; a[5] = 504; a[6] = 906;
      for (n = 7, N,
      my(t1 = 2*(7*n^2 - 7*n + 3)*a[n-1] - 12*(7*n^2 - 14*n + 9)*a[n-2],
         t2 = 39*(7*n^2 - 21*n + 18) * a[n-3] - 72*(7*n^2 - 28*n + 30)*a[n-4],
         t3 = 72*(7*n^2 - 35*n + 45) * a[n-5] - 216*(n-3)^2 * a[n-6]);
         a[n] = (t1+t2+t3)/n^2);
      concat(1,a);
    };
    seq(33)
    

Formula

n^2 * a(n) = 2*(7*n^2 - 7*n + 3)*a(n-1) - 12*(7*n^2 - 14*n + 9)*a(n-2) + 39*(7*n^2 - 21*n + 18) * a(n-3) - 72*(7*n^2 - 28*n + 30)*a(n-4) + 72*(7*n^2 - 35*n + 45) * a(n-5) - 216*(n-3)^2 * a(n-6), with a(0)=1, a(1)=6, a(2)=24, a(3)=78, a(4)=216, a(5)=504.
0 = x*(x+2)*(x+3)*(x^2+3*x+3)*(x^2+6*x+12)*y'' + (7*x^6 + 84*x^5 + 420*x^4 + 1092*x^3 + 1512*x^2 + 1008*x + 216)*y' + 9*(x+2)^2 * (x^3 + 6*x^2 + 12*x + 6)*y, where y(x) = A(x/-6).

A276180 n^2*a(n) = 2*(14*n^2 - 16*n + 7)*a(n-1) - 20*(24*n^2 - 56*n + 41)*a(n-2) + 80*(64*n^2 - 224*n + 221)*a(n-3) - 1600*(24*n^2 - 112*n + 139)*a(n-4) + 6400*(28*n^2 - 164*n + 245)*a(n-5) - 128000*(2*n-7)^2*a(n-6) for n>6, a(0)=1, a(1)=10, a(2)=30, a(3)=-300, a(4)=-3850, a(5)=-13940, a(6) = 56300.

Original entry on oeis.org

1, 10, 30, -300, -3850, -13940, 56300, 543400, -2332250, -29758500, 340835780, 7316239000, 40381709500, -199606565000, -4494519345000, -25429880846000, 18331676223750, 848074482677500, 714616060812500, -19019302889325000, 506727569992188500
Offset: 0

Views

Author

Gheorghe Coserea, Aug 24 2016

Keywords

Examples

			A(x) = 1 + 10*x + 30*x^2 - 300*x^3 - 3850*x^4 - 13940*x^5 + ... is the g.f.
		

Crossrefs

Programs

  • Magma
    I:=[10,30,-300,-3850,-13940,56300]; [1] cat [n le 6 select I[n] else (2*(14*n^2-16*n+7)*Self(n-1)-20*(24*n^2- 56*n+41)*Self(n-2)+80*(64*n^2-224*n+221)*Self(n-3)-1600*(24*n^2-112*n+139)*Self(n-4)+6400*(28*n^2-164*n+245)*Self(n-5)-128000*(2*n-7)^2*Self(n-6))div n^2: n in [1..30]]; // Vincenzo Librandi, Aug 25 2016
  • Mathematica
    a[n_] := a[n] = If[n <= 6, {1, 10, 30, -300, -3850, -13940, 56300}[[n+1]], (1/n^2)(6400(28n^2 - 164n + 245) a[n-5] - 1600(24n^2 - 112n + 139) a[n-4] + 80(64n^2 - 224n + 221) a[n-3] - 20(24n^2 - 56n + 41) a[n-2] + 2(14n^2 - 16n + 7) a[n-1] - 128000(2n - 7)^2 a[n-6])];
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 16 2018 *)
  • PARI
    seq(N) = {
      my(a = vector(N));
      a[1] = 10; a[2] = 30; a[3] = -300; a[4] = -3850; a[5] = -13940; a[6] = 56300;
      for (n=7, N,
      my(t1 = 2*(14*n^2 - 16*n + 7)*a[n-1] - 20*(24*n^2 - 56*n + 41)*a[n-2],
         t2 = 80*(64*n^2 - 224*n + 221)*a[n-3] - 1600*(24*n^2 - 112*n + 139)*a[n-4],
         t3 = 6400*(28*n^2 - 164*n + 245)*a[n-5] - 128000*(2*n-7)^2 * a[n-6]);
      a[n] = (t1+t2+t3)/n^2);
      concat(1,a);
    };
    seq(25)
    

Formula

n^2*a(n) = 2*(14*n^2 - 16*n + 7)*a(n-1) - 20*(24*n^2 - 56*n + 41)*a(n-2) + 80*(64*n^2 - 224*n + 221)*a(n-3) - 1600*(24*n^2 - 112*n + 139)*a(n-4) + 6400*(28*n^2 - 164*n + 245)*a(n-5) - 128000*(2*n-7)^2*a(n-6) for n>6, a(0)=1, a(1)=10, a(2)=30, a(3)=-300, a(4)=-3850, a(5)=-13940, a(6)=56300.
0 = 4*x*(x^2+2*x+5)*(x^4+5*x^3+15*x^2+25*x+25)*y'' + (24*x^6 + 144*x^5 + 520*x^4 + 1120*x^3 + 1600*x^2 + 1300*x + 500)*y' + 25*(x^5 + 5*x^4 + 15*x^3 + 25*x^2 + 25*x + 10)*y, where y(x) = A(x/-20).

A273510 a(n) is the largest level N such that genus of modular curve X_0(N) is n (or -1 if no such curve exists).

Original entry on oeis.org

25, 49, 50, 64, 81, 75, 121, 100, 169, 128, 127, 147, 157, 163, 181, 193, 199, 289, 229, 243, 239, 257, 361, 283, 293, 313, 343, 337, 349, 353, 373, 379, 397, 409, 421, 529, 439, 457, 463, 467, 487, 499, 509, 523, 541, 547, 557, 577, 625, 601, 613, 619, 631, 643, 661, 673, 677, 691, 841, 667, 733
Offset: 0

Views

Author

Gheorghe Coserea, May 23 2016

Keywords

Comments

a(10^7) = 120000007 is the largest value in the first 1+10^7 terms of the sequence.
The exception occurs first at a(150) = -1. - Georg Fischer, Feb 15 2019

Examples

			For n = 0 we have 0 = A001617(k) when k is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 25 (A091401); the largest of this values is 25 therefore a(0) = 25.
For n = 1 we have 1 = A001617(k) when k is 11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, 49 (A091403); the largest of this values is 49 therefore a(1) = 49.
For n = 2 we have 2 = A001617(k) when k is 22, 23, 26, 28, 29, 31, 37, 50 (A091404); the largest of this values is 50 therefore a(2) = 50.
For n = 150 (= A054729(1)) we have 150 <> A001617(k) for all k therefore a(150) = -1.
		

Crossrefs

Programs

  • Mathematica
    a1617[n_] := If[n < 1, 0, 1 + Sum[MoebiusMu[d]^2 n/d/12 - EulerPhi[GCD[d, n/d]]/2, {d, Divisors[n]}] - Count[(#^2 - # + 1)/n& /@ Range[n], ?IntegerQ]/3 - Count[(#^2 + 1)/n& /@ Range[n], ?IntegerQ]/4];
    seq[n_] := Module[{a, bnd}, a = Table[-1, {n+1}]; bnd = 12n + 18 Floor[Sqrt[n] ] + 100; For[k = 1, k <= bnd, k++, g = a1617[k]; If[g <= n, a[[g+1]] = k]]; a];
    seq[60] (* Jean-François Alcover, Nov 20 2018, after Gheorghe Coserea and Michael Somos in A001617 *)
  • PARI
    A000089(n) = {
      if (n%4 == 0 || n%4 == 3, return(0));
      if (n%2 == 0, n \= 2);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k, 1] % 4 == 3, 0, 2));
    };
    A000086(n) = {
      if (n%9 == 0 || n%3 == 2, return(0));
      if (n%3 == 0, n \= 3);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k, 1] % 3 == 2, 0, 2));
    };
    A001615(n) = {
      my(f = factor(n), fsz = matsize(f)[1],
         g = prod(k=1, fsz, (f[k, 1]+1)),
         h = prod(k=1, fsz, f[k, 1]));
      return((n*g)\h);
    };
    A001616(n) = {
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, f[k, 1]^(f[k, 2]\2) + f[k, 1]^((f[k, 2]-1)\2));
    };
    A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;
    seq(n) = {
      my(a = vector(n+1, g, -1), bnd = 12*n + 18*sqrtint(n) + 100, g);
      for (k = 1, bnd, g = A001617(k); if (g <= n, a[g+1] = k));
      return(a);
    };
    seq(60)

Formula

Let S(n) = {k, n = A001617(k)}; if the level set S(n) is not empty then a(n) = max S(n) and A054728(n) = min S(n) and A273445(n) = card S(n), otherwise a(n) = A054728(n) = -1 and A273445(n) = 0.
Previous Showing 11-20 of 22 results. Next