A191566 a(n) = 7*a(n-1) + (-1)^n*6*2^(n-1).
1, 1, 19, 109, 811, 5581, 39259, 274429, 1921771, 13450861, 94159099, 659107549, 4613765131, 32296331341, 226074368539, 1582520481469, 11077643566891, 77543504575021, 542804532811579, 3799631728108189
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Index entries for linear recurrences with constant coefficients, signature (5,14).
Programs
-
Magma
[(7^n+2*(-2)^n)/3: n in [0..30]]; // Vincenzo Librandi, Jun 07 2011
-
Mathematica
LinearRecurrence[{5,14},{1,1},40] (* Harvey P. Dale, Mar 01 2017 *) CoefficientList[Series[(1 - 4*x)/(1 - 5*x - 14*x^2), {x, 0, 20}], x] (* Stefano Spezia, Sep 12 2018 *)
-
PARI
a(n)=(7^n+2*(-2)^n)/3 \\ Charles R Greathouse IV, Jun 06 2011
Formula
a(n+1) - a(n) = 18 * (0 followed by A053573(n)).
a(n) = (7^n + 2*(-2)^n)/3. - Charles R Greathouse IV, Jun 06 2011
G.f.: (1-4*x)/(1 - 5*x - 14*x^2). - Bruno Berselli, Jun 07 2011
a(n) = 5*a(n-1) + 14*a(n-2).
Comments