cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-38 of 38 results.

A382867 Decimal expansion of (Pi^3)/31.

Original entry on oeis.org

1, 0, 0, 0, 2, 0, 2, 4, 7, 3, 5, 5, 8, 0, 5, 8, 7, 1, 5, 3, 3, 7, 9, 4, 5, 6, 4, 7, 3, 2, 5, 8, 5, 1, 4, 5, 8, 1, 3, 6, 2, 9, 9, 6, 3, 1, 1, 5, 7, 5, 8, 4, 1, 1, 9, 1, 6, 5, 9, 5, 2, 8, 4, 2, 0, 5, 8, 2, 7, 0, 8, 0, 3, 7, 8, 9, 2, 1, 6, 3, 2, 3, 7, 9, 2, 4, 7, 4, 2, 2, 6, 8, 5, 8, 1, 5, 7, 6, 1, 9, 1
Offset: 1

Views

Author

Jason Bard, Jun 12 2025

Keywords

Examples

			1.0002024735580587153379456473258514581362996311575...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^3/31, 10, 100][[1]]

A096439 Decimal expansion of (Pi^3 - e^3)^(1/2).

Original entry on oeis.org

3, 3, 0, 4, 6, 5, 4, 2, 5, 6, 8, 1, 9, 0, 3, 2, 5, 6, 4, 1, 5, 5, 3, 2, 4, 3, 1, 2, 9, 0, 0, 3, 4, 9, 5, 7, 7, 2, 5, 4, 0, 2, 5, 4, 3, 6, 4, 8, 7, 8, 4, 5, 2, 1, 7, 7, 9, 7, 3, 1, 8, 6, 0, 7, 8, 1, 4, 5, 5, 7, 6, 5, 5, 3, 0, 6, 3, 1, 7, 6, 5, 5, 3, 2, 2, 4, 9, 9, 0, 5, 8, 9, 1, 2, 8, 5, 2, 1, 1, 6, 1, 1, 5
Offset: 1

Views

Author

Mohammad K. Azarian, Aug 10 2004

Keywords

Examples

			3.304654256819032564155324312900...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[Pi^3-E^3],10,120][[1]] (* Harvey P. Dale, May 05 2022 *)

A096440 Decimal expansion of (Pi^3 - e^3)^(1/3).

Original entry on oeis.org

2, 2, 1, 8, 6, 2, 5, 5, 9, 7, 1, 5, 6, 6, 4, 4, 8, 4, 0, 9, 8, 7, 0, 5, 7, 4, 3, 7, 8, 9, 8, 4, 9, 4, 7, 6, 4, 2, 8, 5, 9, 5, 7, 8, 4, 4, 5, 6, 0, 7, 9, 1, 9, 4, 3, 2, 8, 7, 0, 2, 0, 7, 4, 2, 3, 1, 2, 9, 9, 2, 8, 4, 4, 2, 4, 6, 6, 7, 5, 4, 3, 5, 2, 7, 2, 7, 7, 0, 4, 8, 9, 6, 3, 2, 8, 5, 3, 8, 6, 8, 0, 6, 1, 4, 5
Offset: 1

Views

Author

Mohammad K. Azarian, Aug 10 2004

Keywords

Examples

			2.218625597156644840987057437898...
		

Crossrefs

Programs

A194656 Decimal expansion of (2*Pi^5*log(2) - 30*Pi^3*zeta(3) + 225*Pi*zeta(5))/320.

Original entry on oeis.org

1, 2, 2, 0, 4, 7, 2, 9, 5, 8, 8, 5, 9, 2, 8, 7, 2, 1, 6, 3, 3, 2, 6, 0, 2, 9, 6, 2, 8, 2, 2, 9, 5, 2, 8, 8, 1, 4, 4, 5, 6, 8, 7, 2, 0, 5, 0, 5, 6, 9, 2, 4, 2, 8, 1, 5, 5, 4, 3, 8, 5, 7, 9, 2, 6, 4, 2, 7, 6, 2, 1, 5, 6, 7, 7, 7, 9, 5, 5, 8, 6, 5, 2, 1, 0, 9, 1, 3, 5, 3, 0, 9, 5, 5, 0, 4, 5, 5, 8, 2, 8, 0, 9, 3, 5
Offset: 0

Views

Author

Seiichi Kirikami, Sep 01 2011

Keywords

Comments

The absolute value of the integral{x=0..Pi/2} x^4*log(sin(x )) dx or(d^4/da^4(integral {x=0..Pi/2} cos(ax)*log(sin(x )) dx)) at a=0. The absolute value of m=2 of (-1)^(m+1)*(sum {n=1..infinity} (limit {a -> 0} (d^(2m)/da^(2m)(sin((a+2n)*Pi/2)/n/(a+2n)))))-(Pi/2)^(2m+1)*log(2)/(2m+1). - Seiichi Kirikami and Peter J. C. Moses, Sep 01 2011

Examples

			0.12204729588592872163...
		

References

  • I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 4th edition, 1.441.2

Crossrefs

Programs

  • Mathematica
    RealDigits[ N[Pi (2 Pi^4*Log[2]-30 Pi^2*Zeta[3]+225 Zeta[5])/320, 150]][[1]]

Formula

Equals (2*A092731*A002162-30*A091925*A002117+225*A000796*A013663)/320.

A225016 Decimal expansion of Pi^3/8.

Original entry on oeis.org

3, 8, 7, 5, 7, 8, 4, 5, 8, 5, 0, 3, 7, 4, 7, 7, 5, 2, 1, 9, 3, 4, 5, 3, 9, 3, 8, 3, 3, 8, 7, 6, 7, 4, 4, 0, 0, 2, 7, 8, 1, 6, 1, 0, 7, 0, 7, 3, 5, 6, 3, 8, 4, 6, 1, 7, 6, 8, 0, 6, 7, 2, 6, 2, 9, 7, 5, 7, 9, 9, 3, 6, 4, 6, 8, 3, 2, 1, 3, 2, 5, 4, 6, 9, 5, 8, 3, 7, 6, 2, 9, 0, 7, 5, 3, 6, 0, 7, 7, 4
Offset: 1

Views

Author

Jean-François Alcover, Apr 24 2013

Keywords

Examples

			3.875784585037477521934539383387674400278161070735638461768067262975799364683...
		

Crossrefs

Programs

Formula

Equals Integral_{x>0} log(x)^2/(1+x^2) dx.
Equals Integral_{x=0..Pi/2} log(tan(x))^2 dx.
Equals Integral_{x=0..Pi/2} log(sin(x)^3)*log(sin(x))-(3*Pi/2)*log(2)^2 dx.
Equals (27/7) * Sum_{k>=0} binomial(2*k, k)/((2*k+1)^3*16^k);
Equals (27/7) * 4F3([1/2, 1/2, 1/2, 1/2], [3/2, 3/2, 3/2], 1/4), where pFq() is the generalized hypergeometric function.
From Amiram Eldar, Aug 21 2020: (Start)
Equals Integral_{x=0..oo} x^2/cosh(x) dx.
Equals 2 + Integral_{x=0..oo} x^2 * exp(-x) * tanh(x) dx. (End)
From Gleb Koloskov, Jun 15 2021: (Start)
Equals 2*Integral_{x=0..1} log(x)^2/(1+x^2) dx.
Equals 2*Integral_{x=1..oo} log(x)^2/(1+x^2) dx.
Equals 2*(-1)^n*Integral_{x=-1/e..0} W(n,x)*(1-W(n,x))*log(-W(n,x))^2/x/(1-W(n,x)^4) dx, where W=LambertW, for n=0 and n=-1. (End)

Extensions

Offset corrected by Rick L. Shepherd, Jan 01 2014

A245719 Decimal expansion of the skewness of the Gumbel distribution.

Original entry on oeis.org

1, 1, 3, 9, 5, 4, 7, 0, 9, 9, 4, 0, 4, 6, 4, 8, 6, 5, 7, 4, 9, 2, 7, 9, 3, 0, 1, 9, 3, 8, 9, 8, 4, 6, 1, 1, 2, 0, 8, 7, 5, 9, 9, 7, 9, 5, 8, 3, 6, 5, 5, 1, 8, 2, 4, 7, 2, 1, 6, 5, 5, 7, 1, 0, 0, 8, 5, 2, 4, 8, 0, 0, 7, 7, 0, 6, 0, 7, 0, 6, 8, 5, 7, 0, 7, 1, 8, 7, 5, 4, 6, 8, 8, 6, 9, 3, 8, 5, 1, 5
Offset: 1

Views

Author

Jean-François Alcover, Jul 30 2014

Keywords

Examples

			1.139547099404648657492793019389846112087599795836551824721655710085248...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.16 Extreme value constants, p. 365.

Crossrefs

Programs

  • Mathematica
    RealDigits[12*Sqrt[6]*Zeta[3]/Pi^3, 10, 100] // First
  • PARI
    12*sqrt(6)*zeta(3)/Pi^3 \\ Stefano Spezia, Dec 15 2024

Formula

Equals 12*sqrt(6)*zeta(3)/Pi^3.

A325629 Floor of number of n-dimensional degrees in an n-sphere.

Original entry on oeis.org

2, 360, 41252, 3712766, 283634468, 19145326633, 1170076174384, 65816784809141, 3447793362911604, 16969079580805447, 7901760333122072321, 350023289756266797348, 14816864219294689084225
Offset: 0

Views

Author

Eliora Ben-Gurion, Sep 07 2019

Keywords

Comments

Only the 0th and 1st terms of this sequence are exact values of n-degrees in an n-sphere, by definition. The 0-sphere, being 2 disconnected points at the ends of a segment, is trivial.
The number of degrees, minutes, seconds in an n-sphere is designed to approximate the size of an n-cube, m^n units in size, as m becomes increasingly small, observed from the center of the sphere. This makes a degree Pi/180 of a radian, a square degree (Pi/180)^2 of a steradian, a cubic degree (Pi/180)^3 of a 3-radian, etc.
The sequence has a maximum value at n = 20626 with a value of 1.3610489172...*10^4479, too large to be written here. I conjecture that the peak value of the function analytically is somewhere near 64800/Pi = 20626.48062...
At n = 56058 the sequence has a value of 281 (actual number 281.4089), meaning the 56058-dimensional sphere has less than 360 degrees. At n = 56070, the function has a value of 0.6978855, turning the rest of the sequence into a string of zeros.
An "N-sphere" is located in an N+1-dimensional space, 1-sphere being a circle, 2-sphere being an ordinary sphere, and so on.
From Jon E. Schoenfield, Sep 07 2019: (Start)
The maximum value of the continuous function is 1.361052727810610001492173640278424460497...*10^4479 and it occurs at 20626.48061662940750570152124725484602696... which is close to 64800/Pi, but it's actually 64799.99997461521504462375443773494034381.../Pi. That numerator appears to be 64800 - z/64800 + (27/10) * z^2 / 64800^3 - ... where z = zeta(2) = Pi^2 / 6. (End)

Examples

			Number of cubic degrees in a 3-sphere:
Surface area of a 3-sphere: 2*Pi^((3+1)/2) / ((3+1)/2 - 1)! = 2*Pi^2 / (2-1)! = 2*Pi^2.
Cubic degrees: 2*Pi^2 * (180/Pi)^3 = 11664000 / Pi = 3712766.512...
Number of tesseractic degrees in a 4-sphere:
Surface area of a 4-sphere: 2*Pi^((4+1)/2) / Gamma(5/2) = 2*Pi^(5/2) / (3*Pi^(1/2)/4) = 8*Pi^2/3.
Tesseractic degrees: 8*Pi^2/3 * (180/Pi)^4 = 2799360000 / Pi^2 = 283634468.641...
		

Crossrefs

Surface area of k-dimensional sphere for k=2..8: A019692, A019694, A164102, A164104, A091925, A164107, A164109.
Cf. A125560.

Formula

a(n) = floor((2*Pi^((n+1)/2)/((n+1)/2-1)!)/(Pi/180)^n).
a(n) = floor((2*Pi^((n+1)/2)/(Gamma((n+1)/2)))/(Pi/180)^n).
a(n) = floor(2^(2n+1)*45^n*Pi^((n+1)/2-n)/((n+1)/2-1)!).
a(n) = floor(2^(2n+1)*45^n*Pi^((n+1)/2-n)/(Gamma((n+1)/2))).

A379334 Decimal expansion of the minimum value of the function s(t) = (Pi + 2*sqrt(1 + t^2))/(1 + Pi/2 + t) for t > 0.

Original entry on oeis.org

1, 6, 5, 7, 4, 3, 4, 7, 8, 2, 6, 4, 9, 1, 1, 0, 7, 2, 3, 5, 1, 5, 7, 7, 2, 0, 2, 9, 2, 3, 3, 3, 6, 9, 0, 8, 9, 8, 8, 7, 8, 5, 4, 9, 7, 8, 3, 4, 0, 4, 5, 7, 6, 6, 1, 6, 5, 7, 4, 2, 3, 5, 9, 1, 2, 4, 4, 7, 2, 5, 8, 0, 4, 9, 0, 2, 3, 1, 4, 9, 0, 6, 3, 8, 4, 8, 1, 0, 8, 5, 6, 0, 4, 0, 7, 5, 5, 7, 3, 5
Offset: 1

Views

Author

Stefano Spezia, Dec 21 2024

Keywords

Examples

			1.65743478264911072351577202923336908988785497834...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 7.4, p. 466.

Crossrefs

Programs

  • Mathematica
    RealDigits[2(Pi+Pi^2+Sqrt[8+Pi^3+4Pi(3+Sqrt[2+Pi])+Pi^2(7+2Sqrt[2+Pi])])/(4+Pi^2+Pi(4+Sqrt[2+Pi])),10,100][[1]]

Formula

Equals 2*(Pi + Pi^2 + sqrt(8 + Pi^3 + 4Pi*(3 + sqrt(2 + Pi)) + Pi^2*(7 + 2*sqrt(2 + Pi))))/(4 + Pi^2 + Pi*(4 + sqrt(2 + Pi))).
Previous Showing 31-38 of 38 results.