cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 44 results. Next

A301760 Number of rooted twice-partitions of n where the composite rooted partition is constant.

Original entry on oeis.org

1, 1, 2, 4, 7, 11, 17, 24, 34, 46, 63, 82, 109, 140, 183, 233, 298, 376, 479, 598, 753, 938, 1171, 1449, 1797, 2210, 2726, 3342, 4095, 4990, 6088, 7388, 8968, 10843, 13099, 15770, 18975, 22756, 27276, 32603, 38925, 46353, 55158, 65479, 77656, 91904, 108645
Offset: 1

Views

Author

Gus Wiseman, Mar 26 2018

Keywords

Comments

A rooted partition of n is an integer partition of n - 1. A rooted twice-partition of n is a choice of a rooted partition of each part in a rooted partition of n.

Examples

			The a(5) = 7 rooted twice-partitions: (3), (111), (2)(), (11)(), (1)(1), (1)()(), ()()()().
		

Crossrefs

Programs

  • Mathematica
    nn=50;
    ser=(1-nn)/(1-x)+Sum[Product[1/(1-x^(d k+1)),{k,0,nn}],{d,nn}];
    CoefficientList[Series[ser,{x,0,nn}],x]

Formula

O.g.f.: 1/(1 - x) + Sum_{n > 0} (-1/(1 - x) + Product_{k >= 0} 1/(1 - x^(n * k + 1))).

A301766 Number of rooted twice-partitions of n where the first rooted partition is strict and the composite rooted partition is constant, i.e., of type (R,Q,R).

Original entry on oeis.org

1, 1, 1, 3, 4, 6, 7, 9, 11, 13, 16, 19, 22, 26, 32, 36, 42, 52, 59, 66, 79, 93, 108, 125, 141, 162, 192, 222, 248, 285, 331, 375, 430, 492, 555, 632, 719, 816, 929, 1051, 1177, 1327, 1510, 1701, 1908, 2146, 2408, 2705, 3035, 3388, 3792, 4257, 4751, 5284, 5894
Offset: 1

Views

Author

Gus Wiseman, Mar 26 2018

Keywords

Comments

A rooted partition of n is an integer partition of n - 1. A rooted twice-partition of n is a choice of a rooted partition of each part in a rooted partition of n.

Examples

			The a(9) = 11 rooted twice-partitions:
(7), (1111111),
(6)(), (33)(), (222)(), (111111)(), (11111)(1), (22)(2), (1111)(11),
(1111)(1)(), (111)(11)().
		

Crossrefs

Programs

  • Mathematica
    twirtns[n_]:=Join@@Table[Tuples[IntegerPartitions[#-1]&/@ptn],{ptn,IntegerPartitions[n-1]}];
    Table[Select[twirtns[n],UnsameQ@@Total/@#&&SameQ@@Join@@#&]//Length,{n,20}]
  • PARI
    a(n)=if(n<3, 1, sum(k=1, n-2, polcoef(prod(j=0, (n-2)\k, 1 + x^(j*k + 1) + O(x^n)), n-1))) \\ Andrew Howroyd, Aug 26 2018

Extensions

Terms a(26) and beyond from Andrew Howroyd, Aug 26 2018

A308206 G.f.: x * Product_{k>=1} 1/(1 - a(k)*x^k)^k.

Original entry on oeis.org

1, 1, 3, 12, 63, 396, 2926, 24497, 229757, 2377153, 26917186, 330804783, 4387399275, 62455948949, 950123048257, 15384516283921, 264229711285878, 4798448004296966, 91878671010619078, 1850134691327469413, 39088537892778891963, 864610314507158356377
Offset: 1

Views

Author

Ilya Gutkovskiy, May 15 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = SeriesCoefficient[x Product[1/(1 - a[k] x^k)^k, {k, 1, n - 1}], {x, 0, n}]; Table[a[n], {n, 1, 22}]
    a[n_] := a[n] = Sum[Sum[d^2 a[d]^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n - 1}]/(n - 1); a[1] = 1; Table[a[n], {n, 1, 22}]

Formula

Recurrence: a(n+1) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} d^2*a(d)^(k/d) ) * a(n-k+1).

A301751 Number of ways to choose a rooted partition of each part in a strict rooted partition of n.

Original entry on oeis.org

1, 1, 1, 3, 5, 10, 17, 32, 54, 100, 166, 289, 494, 840, 1393, 2400, 3931, 6498, 10861, 17728, 28863, 47557, 77042, 123881, 201172, 322459, 517032, 827993, 1316064, 2084632, 3328204, 5236828, 8247676, 13005652, 20417628, 31934709, 49970815, 77789059, 121144373
Offset: 1

Views

Author

Gus Wiseman, Mar 26 2018

Keywords

Comments

A rooted partition of n is an integer partition of n - 1.

Examples

			The a(7) = 17 rooted twice-partitions:
(5), (41), (32), (311), (221), (2111), (11111),
(4)(), (31)(), (22)(), (211)(), (1111)(), (3)(1), (21)(1), (111)(1),
(2)(1)(), (11)(1)().
		

Crossrefs

Programs

  • Mathematica
    nn=50;
    ser=x*Product[1+PartitionsP[n-1]x^n,{n,nn}];
    Table[SeriesCoefficient[ser,{x,0,n}],{n,nn}]
  • PARI
    seq(n)={Vec(prod(k=1, n-1, 1 + numbpart(k-1)*x^k + O(x^n)))} \\ Andrew Howroyd, Aug 29 2018

Formula

O.g.f.: x * Product_{n > 0} (1 + A000041(n-1) x^n).

A301753 Number of ways to choose a strict rooted partition of each part in a rooted partition of n.

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 16, 25, 43, 66, 108, 166, 269, 408, 643, 975, 1517, 2277, 3497, 5223, 7936, 11803, 17736, 26219, 39174, 57594, 85299, 124957, 183987, 268158, 392685, 569987, 830282, 1200843, 1740422, 2507823, 3620550, 5197885, 7472229, 10694865, 15319700
Offset: 1

Views

Author

Gus Wiseman, Mar 26 2018

Keywords

Comments

A rooted partition of n is an integer partition of n - 1.

Examples

			The a(7) = 16 rooted twice-partitions:
(5), (32), (41),
(2)(2), (3)(1), (4)(), (21)(1), (31)(),
(1)(1)(1), (2)(1)(), (3)()(), (21)()(),
(1)(1)()(), (2)()()(),
(1)()()()(),
()()()()()().
		

Crossrefs

Programs

  • Mathematica
    nn=50;
    ser=x*Product[1/(1-PartitionsQ[n-1]x^n),{n,nn}];
    Table[SeriesCoefficient[ser,{x,0,n}],{n,nn}]
  • PARI
    seq(n)={my(u=Vec(prod(k=1, n-1, 1 + x^k + O(x^n)))); Vec(1/prod(k=1, n-1, 1 - u[k]*x^k + O(x^n)))} \\ Andrew Howroyd, Aug 29 2018

Formula

O.g.f.: x * Product_{n > 0} 1/(1 - A000009(n-1) x^n).

A301754 Number of ways to choose a strict rooted partition of each part in a strict rooted partition of n.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 8, 13, 18, 29, 44, 67, 100, 150, 217, 326, 470, 690, 1011, 1463, 2099, 3049, 4355, 6214, 8886, 12632, 17885, 25377, 35763, 50252, 70942, 99246, 138600, 193912, 270286, 375471, 522224, 723010, 1000435, 1383002, 1907724, 2624492, 3613885
Offset: 1

Views

Author

Gus Wiseman, Mar 26 2018

Keywords

Comments

A rooted partition of n is an integer partition of n - 1.

Examples

			The a(8) = 13 rooted twice-partitions:
(6), (51), (42), (321),
(5)(), (41)(), (32)(), (4)(1), (31)(1), (3)(2), (21)(2),
(3)(1)(), (21)(1)().
		

Crossrefs

Programs

  • Mathematica
    nn=50;
    ser=x*Product[1+PartitionsQ[n-1]x^n,{n,nn}];
    Table[SeriesCoefficient[ser,{x,0,n}],{n,nn}]
  • PARI
    seq(n)={my(u=Vec(prod(k=1, n-1, 1 + x^k + O(x^n)))); Vec(prod(k=1, n-1, 1 + u[k]*x^k + O(x^n)))} \\ Andrew Howroyd, Aug 29 2018

Formula

O.g.f.: x * Product_{n > 0} (1 + A000009(n-1) x^n).

A301763 Number of ways to choose a constant rooted partition of each part in a constant rooted partition of n.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 8, 5, 8, 13, 14, 5, 32, 7, 20, 64, 26, 6, 92, 7, 126, 199, 22, 5, 352, 252, 41, 581, 394, 7, 1832, 9, 292, 2119, 31, 3216, 4946, 10, 40, 8413, 7708, 9, 20656, 9, 2324, 53546, 24, 5, 70040, 16395, 59361, 131204, 9503, 7, 266780, 178180, 82086
Offset: 1

Views

Author

Gus Wiseman, Mar 26 2018

Keywords

Comments

A rooted partition of n is an integer partition of n - 1.

Examples

			The a(7) = 8 rooted twice-partitions: (5), (11111), (2)(2), (2)(11), (11)(2), (11)(11), (1)(1)(1), ()()()()()().
The a(15) = 20 rooted twice-partitions:
()()()()()()()()()()()()()(),
(1)(1)(1)(1)(1)(1)(1), (111111)(111111), (1111111111111),
(111111)(222), (222)(111111), (222)(222),
(111111)(33), (222)(33), (33)(111111), (33)(222), (33)(33),
(111111)(6), (222)(6), (33)(6), (6)(111111), (6)(222), (6)(33), (6)(6),
(13).
		

Crossrefs

Programs

  • Mathematica
    Table[If[n===1,1,Sum[If[d===n-1,1,DivisorSigma[0,(n-1)/d-1]]^d,{d,Divisors[n-1]}]],{n,50}]
  • PARI
    a(n)=if(n==1, 1, sumdiv(n-1, d, if(d==n-1, 1, numdiv((n-1)/d-1)^d))) \\ Andrew Howroyd, Aug 26 2018

A301765 Number of rooted twice-partitions of n where the first rooted partition is constant and the composite rooted partition is strict, i.e., of type (Q,R,Q).

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 5, 8, 7, 11, 11, 19, 16, 27, 23, 42, 33, 63, 47, 87, 71, 119, 90, 195
Offset: 1

Views

Author

Gus Wiseman, Mar 26 2018

Keywords

Comments

A rooted partition of n is an integer partition of n - 1. A rooted twice-partition of n is a choice of a rooted partition of each part in a rooted partition of n.

Examples

			The a(9) = 8 rooted twice-partitions:
(7), (61), (52), (43), (421),
(3)(21), (21)(3),
()()()()()()()().
		

Crossrefs

Programs

  • Mathematica
    twirtns[n_]:=Join@@Table[Tuples[IntegerPartitions[#-1]&/@ptn],{ptn,IntegerPartitions[n-1]}];
    Table[Select[twirtns[n],SameQ@@Total/@#&&UnsameQ@@Join@@#&]//Length,{n,20}]

A345973 G.f.: x + x^2 / Product_{n>=1} (1 - a(n)*x^n).

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 10, 20, 36, 73, 138, 281, 549, 1136, 2263, 4705, 9553, 20015, 41096, 86643, 179638, 380701, 795892, 1693003, 3562217, 7612680, 16099538, 34505797, 73345831, 157678081, 336419942, 725236780, 1552662599, 3354979195, 7205601904, 15600414855, 33594465666
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 30 2021

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, 1, add(a(n-k)*add(d*
          a(d)^(k/d), d=numtheory[divisors](k)), k=1..n-2)/(n-2))
        end:
    seq(a(n), n=1..37);  # Alois P. Heinz, Jul 01 2021
  • Mathematica
    a[n_] := a[n] = SeriesCoefficient[x + x^2/Product[(1 - a[k] x^k), {k, 1, n - 1}], {x, 0, n}]; Table[a[n], {n, 1, 37}]
    a[1] = a[2] = 1; a[n_] := a[n] = (1/(n - 2)) Sum[Sum[d a[d]^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n - 2}]; Table[a[n], {n, 1, 37}]

Formula

G.f.: x + x^2 * exp(Sum_{n>=1} Sum_{k>=1} a(n)^k * x^(n*k) / k).
a(n+2) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} d * a(d)^(k/d) ) * a(n-k+2).

A093639 Self-convolution forms A093638.

Original entry on oeis.org

1, 1, 3, 10, 40, 163, 738, 3308, 15767, 74784, 368717, 1805773, 9113860, 45683811, 234272577, 1194970083, 6201864043, 32034420492, 167941221248, 876209929880, 4627819824850, 24348860106096, 129422692783990, 685425678409977
Offset: 0

Views

Author

Paul D. Hanna, Apr 07 2004

Keywords

Crossrefs

Formula

G.f.: A(x) = Product_{n>=0} 1/(1-A093638(n)*x^(n+1)).
Previous Showing 21-30 of 44 results. Next