A203518
a(n) = Product_{2 <= i < j <= n+1} (F(i) + F(j)), where F = A000045 (Fibonacci numbers).
Original entry on oeis.org
1, 3, 60, 20160, 259459200, 329533940736000, 102591687479575117824000, 20251578856869019790329341542400000, 6518596139761671764183992268499872995344384000000, 8899914870403074273776879003081000194727401271025610417766400000000
Offset: 1
-
F:= combinat[fibonacci]:
a:= n-> mul(mul(F(i)+F(j), i=2..j-1), j=3..n+1):
seq(a(n), n=1..12); # Alois P. Heinz, Jul 23 2017
-
f[j_] := Fibonacci[j + 1]; z = 15;
v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
d[n_] := Product[(i - 1)!, {i, 1, n}] (* A000178 *)
Table[v[n], {n, 1, z}] (* A203518 *)
Table[v[n + 1]/v[n], {n, 1, z - 1}] (* A203519 *)
Table[v[n]/d[n], {n, 1, 20}] (* A203520 *)
A203521
a(n) = Product_{1 <= i < j <= n} (prime(i) + prime(j)).
Original entry on oeis.org
1, 1, 5, 280, 302400, 15850598400, 32867800842240000, 5539460271229108224000000, 55190934927547677562078494720000000, 61965661927377302817151474643396198400000000000, 14512955968670787590604912803260278557019929051136000000000000
Offset: 0
a(1) = 1.
a(2) = 2 + 3 = 5.
a(3) = (2+3)(2+5)(3+5) = 280.
-
a:= n-> mul(mul(ithprime(i)+ithprime(j), i=1..j-1), j=2..n):
seq(a(n), n=0..10); # Alois P. Heinz, Jul 23 2017
-
f[j_] := Prime[j]; z = 15;
v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
d[n_] := Product[(i - 1)!, {i, 1, n}] (* A000178 *)
Table[v[n], {n, 1, z}] (* A203521 *)
Table[v[n + 1]/v[n], {n, 1, z - 1}] (* A203522 *)
Table[v[n]/d[n], {n, 1, 20}] (* A203523 *)
A203524
a(n) = Product_{2 <= i < j <= n+1} (prime(i) + prime(j)).
Original entry on oeis.org
1, 8, 960, 3870720, 535088332800, 4746447547269120000, 2251903055463146166681600000, 101133031075657891684280256430080000000, 764075218501479062478490016486870993810227200000000, 510692344365454233151092604262379676645631378616169267200000000000
Offset: 1
-
a:= n-> mul(mul(ithprime(i)+ithprime(j), i=2..j-1), j=3..n+1):
seq(a(n), n=1..10); # Alois P. Heinz, Jul 23 2017
-
f[j_] := Prime[j + 1]; z = 17;
v[n_] := Product[Product[f[k] + f[j], {j, 1, k - 1}], {k, 2, n}]
d[n_] := Product[(i - 1)!, {i, 1, n}] (* A000178 *)
Table[v[n], {n, 1, z}] (* A203524 *)
Table[v[n + 1]/(8 v[n]), {n, 1, z - 1}] (* A203525 *)
Table[v[n]/d[n], {n, 1, 20}] (* A203526 *)
A203748
Vandermonde sequence using x^2 + xy + y^2 applied to (0,1,1,2,2,...,floor(n/2)).
Original entry on oeis.org
1, 1, 3, 588, 1382976, 759365845056, 11257740654368225472, 85256857822344357223236943872, 30991931452969951465382132459004342829056, 10117962915393557751514211466029580457669394910570086400
Offset: 1
-
f[j_] := Floor[j/2]; z = 15;
u := Product[f[j]^2 + f[j] f[k] + f[k]^2, {j, 1, k - 1}]
v[n_] := Product[u, {k, 2, n}]
Table[v[n], {n, 1, z}] (* A203748 *)
Table[v[n + 1]/v[n], {n, 1, z}] (* A203749 *)
Table[Sqrt[v[n + 1]/v[n]], {n, 1, z}]
Table[Sqrt[v[2 n]/v[2 n - 1]], {n, 1, z}] (* A203750 *)
Table[Sqrt[v[2 n + 1]/(3 v[2 n])],
{n, 1, z}] (* A203751 *)
%/%% (* A000027 *)
A203755
Vandermonde sequence using x^4 + y^4 applied to (0,1,1,2,2,...,floor(n/2)).
Original entry on oeis.org
1, 1, 2, 9248, 1368408064, 7012482928301113344, 5821608871192502942968054284288, 827078717211493220641742410981240687143117914112, 60161773220249337113595772781004931116549061984924929733289475833856
Offset: 1
-
f[j_] := Floor[j/2]; z = 16;
u := Product[f[j]^4 + f[k]^4, {j, 1, k - 1}]
v[n_] := Product[u, {k, 2, n}]
Table[v[n], {n, 1, z}] (* A203755 *)
Table[v[n + 1]/v[n], {n, 1, z}] (* A203756 *)
Table[Sqrt[v[n + 1]/v[n]], {n, 1, z}]
Table[Sqrt[v[2 n]/v[2 n - 1]], {n, 1, z}] (* A203757 *)
Table[Sqrt[v[2 n + 1]/(2 v[2 n])],
{n, 1, z}] (* A203758 *)
%/%% (* A000290 *)
A203773
Vandermonde sequence using x^2 + y^2 applied to (0,1,1,2,2,...,floor(n/2)).
Original entry on oeis.org
1, 1, 2, 200, 160000, 24336000000, 66627100800000000, 77020928524800000000000000, 2849158187989401600000000000000000000, 78690953969671659336819671040000000000000000000000
Offset: 1
-
f[j_] := Floor[j/2]; z = 20;
u := Product[f[j]^2 + f[k]^2, {j, 1, k - 1}]
v[n_] := Product[u, {k, 2, n}]
Table[v[n], {n, 1, z}] (* A203773 *)
Table[v[n + 1]/v[n], {n, 1, z}]
Table[Sqrt[v[n + 1]/v[n]], {n, 1, z}]
Table[Sqrt[v[2 n]/v[2 n - 1]], {n, 1, z}] (* A203774 *)
Table[Sqrt[v[2 n + 1]/(2 v[2 n])],
{n, 1, z}] (* A203775 *)
%/%% (* A000027 *)
A093884
Product of all possible sums of three numbers taken from among first n natural numbers.
Original entry on oeis.org
6, 3024, 2874009600, 159950125679984640000, 20708778572935434707683938140160000000, 302101709923756073800654275737927385319576932502732800000000000
Offset: 3
a(4) = (1+2+3)*(1+2+4)*(1+3+4)*(2+3+4) = 3024.
- Amarnath Murthy, Another combinatorial approach towards generalizing the AM-GM inequality, Octogon Mathematical Magazine Vol. 8, No. 2, October 2000.
- Amarnath Murthy, Smarandache Dual Symmetric Functions And Corresponding Numbers Of The Type Of Stirling Numbers Of The First Kind. Smarandache Notions Journal Vol. 11, No. 1-2-3 Spring 2000.
-
Table[Product[(j + k + m), {k, 2, n}, {j, 1, k - 1}, {m, 1, j - 1}], {n, 3, 10}] (* Vaclav Kotesovec, Aug 31 2023 *)
Table[Product[Sqrt[BarnesG[3*k] * BarnesG[k+2] * Gamma[k/2 + 1] / Gamma[3*k/2]] / (BarnesG[2*k + 1] * 2^((k-1)/2)), {k, 1, n}], {n, 3, 10}] (* Vaclav Kotesovec, Aug 31 2023 *)
A203472
a(n) = Product_{3 <= i < j <= n+2} (i + j).
Original entry on oeis.org
1, 7, 504, 498960, 8562153600, 3085457671296000, 27493649380770693120000, 6982164025191299372050022400000, 57286678477842677171688269225656320000000, 16987900892972660430046341200043192304533504000000000, 201504981205067832055356568153709798734509139298353152000000000000
Offset: 1
-
[(&*[(&*[i+j: i in [3..j]])/(2*j): j in [3..n+2]]): n in [1..20]]; // G. C. Greubel, Aug 26 2023
-
a:= n-> mul(mul(i+j, i=3..j-1), j=4..n+2):
seq(a(n), n=1..12); # Alois P. Heinz, Jul 23 2017
-
(* First program *)
f[j_]:= j + 2; z = 16;
v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}]
d[n_]:= Product[(i-1)!, {i,n}] (* A000178 *)
Table[v[n], {n,z}] (* A203472 *)
Table[v[n+1]/v[n], {n,z-1}] (* A203473 *)
Table[v[n]/d[n], {n,20}] (* A203474 *)
(* Second program *)
Table[(18*2^(n+2)^2/Pi^(n/2))*BarnesG[n+3]*BarnesG[n+7/2]/(BarnesG[n+ 6]*BarnesG[7/2]), {n,20}] (* G. C. Greubel, Aug 26 2023 *)
-
[product( gamma(2*j)/gamma(j+3) for j in range(3,n+3) ) for n in range(1,20)] # G. C. Greubel, Aug 26 2023
A203473
a(n) = v(n+1)/v(n), where v=A203472.
Original entry on oeis.org
7, 72, 990, 17160, 360360, 8910720, 253955520, 8204716800, 296541907200, 11861676288000, 520431047136000, 24858235898496000, 1284342188088960000, 71382386874839040000, 4247252019052922880000
Offset: 1
-
[Floor(Gamma(2*n+6)/Gamma(n+6)): n in [1..16]]; // G. C. Greubel, Aug 27 2023
-
(* First program *)
f[j_]:= j+2; z=16;
v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}];
d[n_]:= Product[(i-1)!, {i,n}] (* A000178 *)
Table[v[n], {n,z}] (* A203472 *)
Table[v[n+1]/v[n], {n,z-1}] (* this sequence *)
Table[v[n]/d[n], {n,20}] (* A203474 *)
(* Second program *)
Table[Pochhammer[n+6,n], {n,20}] (* G. C. Greubel, Aug 27 2023 *)
-
[rising_factorial(n+6, n) for n in range(1,16)] # G. C. Greubel, Aug 27 2023
A203479
a(n) = Product_{1 <= i < j <= n} (2^i + 2^j - 2).
Original entry on oeis.org
1, 4, 320, 2027520, 3855986196480, 8359491805553413324800, 79457890145647634305213865656320000, 12897878211365028383150895090566532213003150950400000, 140613650417826346093374124598539442743630963394643403845144815232614400000
Offset: 1
-
[(&*[(&*[2^j+2^k-2: k in [1..j]])/(2^(j+1)-2): j in [1..n]]): n in [1..15]]; // G. C. Greubel, Aug 28 2023
-
a:= n-> mul(mul(2^i+2^j-2, i=1..j-1), j=2..n):
seq(a(n), n=1..12); # Alois P. Heinz, Jul 23 2017
-
(* First program *)
f[j_]:= 2^j -1; z = 15;
v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}]
Table[v[n], {n,z}] (* A203479 *)
Table[v[n+1]/v[n], {n,z-1}] (* A203480 *)
Table[v[n+1]/(4*v[n]), {n,z-1}] (* A203481 *)
(* Second program *)
Table[Product[2^j +2^k -2, {j,n}, {k,j-1}], {n,15}] (* G. C. Greubel, Aug 28 2023 *)
-
[product(product(2^j+2^k-2 for k in range(1,j)) for j in range(1,n+1)) for n in range(1,16)] # G. C. Greubel, Aug 28 2023
Comments