cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A329067 Constant term in the expansion of ((x^5 + x^3 + x + 1/x + 1/x^3 + 1/x^5)*(y^5 + y^3 + y + 1/y + 1/y^3 + 1/y^5) - (x^3 + x + 1/x + 1/x^3)*(y^3 + y + 1/y + 1/y^3))^(2*n).

Original entry on oeis.org

1, 20, 2100, 423440, 117234740, 36938855520, 12321942357648, 4240628338620960, 1489773976776270900, 531369088429408040240, 191788135117910898767200, 69889981814391283195249872, 25671987914195551303751107472, 9493180954173722971961114187200
Offset: 0

Views

Author

Seiichi Manyama, Nov 03 2019

Keywords

Comments

Also number of (2*n)-step closed paths (from origin to origin) in 2-dimensional lattice, using steps (t_1,t_2) (|t_1| + |t_2| = 5).

Crossrefs

Row n=2 of A329066.

Programs

  • PARI
    {a(n) = polcoef(polcoef(((x^5+x^3+x+1/x+1/x^3+1/x^5)*(y^5+y^3+y+1/y+1/y^3+1/y^5)-(x^3+x+1/x+1/x^3)*(y^3+y+1/y+1/y^3))^(2*n), 0), 0)}
    
  • PARI
    {a(n) = polcoef(polcoef((sum(k=0, 5, (x^k+1/x^k)*(y^(5-k)+1/y^(5-k)))-x^5-1/x^5-y^5-1/y^5)^(2*n), 0), 0)}
    
  • PARI
    f(n) = (x^(2*n+2)-1/x^(2*n+2))/(x-1/x);
    a(n) = sum(k=0, 2*n, (-1)^k*binomial(2*n, k)*polcoef(f(2)^k*f(1)^(2*n-k), 0)^2)

Formula

Conjecture: a(n) ~ 400^n / (17*Pi*n). - Vaclav Kotesovec, Nov 04 2019

A307347 Number of 2n-move closed antelope paths on an unbounded chessboard from a given square to the same square.

Original entry on oeis.org

1, 8, 168, 5120, 190120, 7939008, 357713664, 17010543264, 842994009000, 43192225007360, 2275378947981568, 122724475613935104, 6753785574641857024, 378138077830110886400, 21486835143540141873120, 1236506847203439155401920, 71934214120446285067176360
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 03 2019

Keywords

Comments

Antelope is a leaper [3,4].

Crossrefs

Programs

  • Maple
    b:= proc(n, x, y) option remember; `if`(max(x, y)>4*n or x+y>7*n, 0,
          `if`(n=0, 1, add(b(n-1, abs(x+l[1]), abs(y+l[2])), l=[[4, 3],
          [3, 4], [-4, 3], [-3, 4], [4, -3], [3, -4], [-4, -3], [-3, -4]])))
        end:
    a:= n-> b(2*n, 0$2):
    seq(a(n), n=0..25);
    # second Maple program:
    poly := expand((x^4*y^3 + x^3*y^4 + 1/x^4*y^3 + 1/x^3*y^4 + x^4/y^3 + x^3/y^4 + 1/x^4/y^3 + 1/x^3/y^4)^2): z:=1: for n to 100 do z:=expand(z*poly): print(n, coeff(coeff(z, x, 0), y, 0)); end do:
  • Mathematica
    poly = Expand[(x^4*y^3 + x^3*y^4 + 1/x^4*y^3 + 1/x^3*y^4 + x^4/y^3 + x^3/y^4 + 1/x^4/y^3 + 1/x^3/y^4)^2]; z = 1; Flatten[{1, Table[z = Expand[z*poly]; z[[1]], {n, 1, 15}]}]

Formula

a(n) = the constant term in the expansion of (x^4*y^3 + x^3*y^4 + 1/x^4*y^3 + 1/x^3*y^4 + x^4/y^3 + x^3/y^4 + 1/x^4/y^3 + 1/x^3/y^4)^(2*n).
Conjecture: a(n) ~ 64^n / (25*Pi*n).

A326920 Constant term in the expansion of (-1 + Product_{k=1..n} (1 + x_k + 1/x_k))^n.

Original entry on oeis.org

1, 0, 8, 264, 121200, 332810400, 7753173594200, 1440193875113407680, 2250630808138439243100640, 29565964235758317208187044137600, 3307988125501026209547184198622507128848, 3165738749695300492286911657015518806826344524560
Offset: 0

Views

Author

Seiichi Manyama, Oct 29 2019

Keywords

Comments

Also number of n-step closed walks (from origin to origin) in n-dimensional lattice, using steps (t_1,t_2, ... ,t_n) (t_k = -1, 1 or 0 for 1 <= k <= n) except for (0,0, ... ,0) (t_k = 0 for 1 <= k <= n).

Crossrefs

Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A002426(k)^m: A126869 (m=1), A094061 (m=2), A328874 (m=3), A328875 (m=4).

Programs

  • Mathematica
    Table[Sum[(-1)^(n-k) * Binomial[n, k] * Sum[Binomial[k, 2*j]*Binomial[2*j, j], {j, 0, k}]^n, {k, 0, n}], {n, 0, 12}] (* Vaclav Kotesovec, Oct 30 2019 *)
  • PARI
    {a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*polcoef((1+x+1/x)^k, 0)^n)}

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * A002426(k)^n.
a(n) ~ 3^(n^2 + n/2) / (exp(3/16) * 2^n * Pi^(n/2) * n^(n/2)). - Vaclav Kotesovec, Oct 30 2019

A329075 Constant term in the expansion of ((Sum_{k=-2..2} x^k) * (Sum_{k=-2..2} y^k) - (Sum_{k=-1..1} x^k) * (Sum_{k=-1..1} y^k))^n.

Original entry on oeis.org

1, 0, 16, 48, 1200, 10200, 165760, 2032800, 30115120, 417189360, 6116225976, 88579001280, 1308168101856, 19335388664592, 288264711738432, 4311842765438208, 64819095869951280, 977630677389002208, 14796595755047824432, 224583060859608559680, 3417918348978709970680
Offset: 0

Views

Author

Seiichi Manyama, Nov 03 2019

Keywords

Comments

Also number of n-step closed paths (from origin to origin) in 2-dimensional lattice, using steps (t_1,t_2) (|t_1| + |t_2| = 4).

Crossrefs

Row n=2 of A329074.

Programs

  • PARI
    {a(n) = polcoef(polcoef((sum(k=-2, 2, x^k)*sum(k=-2, 2, y^k)-(x+1+1/x)*(y+1+1/y))^n, 0), 0)}
    
  • PARI
    {a(n) = polcoef(polcoef((sum(k=0, 4, (x^k+1/x^k)*(y^(4-k)+1/y^(4-k)))-x^4-1/x^4-y^4-1/y^4)^n, 0), 0)}
    
  • PARI
    f(n) = (x^(n+1)-1/x^n)/(x-1);
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*polcoef(f(2)^k*f(1)^(n-k), 0)^2)

Formula

Conjecture: a(n) ~ 2 * 16^n / (11*Pi*n). - Vaclav Kotesovec, Nov 04 2019

A329076 Constant term in the expansion of ((Sum_{k=-n..n} x^k) * (Sum_{k=-n..n} y^k) - (Sum_{k=-n+1..n-1} x^k) * (Sum_{k=-n+1..n-1} y^k))^n.

Original entry on oeis.org

1, 0, 16, 72, 7008, 162000, 17555520, 1093527120, 140846184640, 16016249944800, 2550757928818680, 419682645514181280, 82389928294166805312, 17418502084657134228768, 4123280170924828458697152, 1054943518137131171386437600, 293933660095874311773617934720, 87968971083026619734709639853632
Offset: 0

Views

Author

Seiichi Manyama, Nov 04 2019

Keywords

Comments

Also number of n-step closed paths (from origin to origin) in 2-dimensional lattice, using steps (t_1,t_2) (|t_1| + |t_2| = 2*n).

Crossrefs

Main diagonal of A329074.

Programs

  • PARI
    {a(n) = polcoef(polcoef((sum(k=-n, n, x^k)*sum(k=-n, n, y^k)-sum(k=-n+1, n-1, x^k)*sum(k=-n+1, n-1, y^k))^n, 0), 0)}
    
  • PARI
    {a(n) = polcoef(polcoef((sum(k=0, 2*n, (x^k+1/x^k)*(y^(2*n-k)+1/y^(2*n-k)))-x^(2*n)-1/x^(2*n)-y^(2*n)-1/y^(2*n))^n, 0), 0)}
    
  • PARI
    f(n) = (x^(n+1)-1/x^n)/(x-1);
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*polcoef(f(n)^k*f(n-1)^(n-k), 0)^2)

Formula

Conjecture: a(n) ~ 3 * 2^(3*n - 2) * n^(n-3) / Pi. - Vaclav Kotesovec, Nov 05 2019

A329816 Triangular array, read by rows: T(n,k) = [(x*y)^k] (-1 + (1 + x + 1/x)*(1 + y + 1/y))^n for -n <= k <= n.

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 8, 2, 1, 1, 6, 27, 24, 27, 6, 1, 1, 12, 70, 132, 216, 132, 70, 12, 1, 1, 20, 155, 480, 1070, 1200, 1070, 480, 155, 20, 1, 1, 30, 306, 1370, 4035, 6900, 8840, 6900, 4035, 1370, 306, 30, 1, 1, 42, 553, 3332, 12621, 29750, 51065, 58800, 51065, 29750, 12621, 3332, 553, 42, 1
Offset: 0

Views

Author

Seiichi Manyama, Nov 21 2019

Keywords

Comments

Also the coefficient of (x/y)^k in the expansion of (-1 + (1 + x + 1/x)*(1 + y + 1/y))^n for -n <= k <= n.
T(n,k) is the number of n step walks a chess king can take from (0,0) to (k,k). For example, for n=3 starting from (0,0) there is 1 walk to (3,3), 6 walks to (2,2), 27 walks to (1,1), 24 walks to (0,0), 27 walks to (-1,-1), 6 walks to (-2,-2) and 1 walk to (-3,-3). - Martin Clever, May 27 2023

Examples

			-1 + (1 + x + 1/x)*(1 + y + 1/y) = x*y + 1/(x*y) + x/y + y/x + x + 1/x + y + 1/y. So T(1,-1) = 1, T(1,0) = 0, T(1,1) = 1.
Triangle begins:
                          1;
                    1,    0,    1;
              1,    2,    8,    2,   1;
         1,   6,   27,   24,   27,   6,   1;
    1,  12,  70,  132,  216,  132,  70,  12,  1;
1, 20, 155, 480, 1070, 1200, 1070, 480, 155, 20, 1;
		

Crossrefs

T(n,0) gives A094061.
Row sums give A288470.

Programs

  • PARI
    {T(n, k) = polcoef(polcoef((-1+(1+x+1/x)*(1+y+1/y))^n, k), k)}

Formula

T(n,k) = T(n,-k).

A098070 Consider a single king on an infinite chessboard. This sequence gives number of n-move paths when king starting at origin reaches the origin again for the first time at step n.

Original entry on oeis.org

1, 0, 8, 24, 152, 816, 5320, 33840, 229144, 1560864, 10906576, 76962912, 550406472, 3969725856, 28875757200, 211436151456, 1557623566104, 11533972310976, 85802992349344, 640901090847360, 4804716170926672, 36138383022850368, 272621594933332000
Offset: 0

Views

Author

Sergey Perepechko, Sep 13 2004

Keywords

Comments

Traditionally for the "first passage time" problems use initial condition Gf(0)=0, but here we define Gf(0)=1 to make this sequence consistent with similar sequences already present in the database.

Examples

			From _Jesiah Darnell_, Sep 22 2023: (Start)
A094061(4) - (a(1)a(3)*2 + a(2)*a(2)*1) = 216 - (0 + 64) = 152, so a(4) = 152.
A094061(7) - (a(1)a(6)*2 + a(2)*a(2)*a(3)*3 + a(2)*a(5)*2 + a(4)*a(3)*2) = 58800 - (0 + 4608 + 13056 + 7296) = 33840, so a(7) = 33840. (End)
		

Crossrefs

Programs

  • Maple
    G:=t->2-Pi*(1+4*t)/2/EllipticK(4*sqrt(t*(1+t))/(1+4*t)); Gf:=convert(series(G(t),t,30),polynom): seq(print(i,coeff(Gf,t,i)),i=0..degree(Gf));
  • Mathematica
    CoefficientList[Series[2-Pi/2*(1+4*x)/EllipticK[16*x*(1+x)/(1+4*x)^2],{x,0,22}],x] (* Vaclav Kotesovec, Mar 10 2014 *)

Formula

G.f.: 2-Pi/2*(1+4*x)/EllipticK(4*sqrt(x*(1+x))/(1+4*x)), (Maple notation).
G.f.: 2 - AGM(sqrt(1 - 8*x), 1 + 4*x). - Vaclav Kotesovec, Sep 30 2019
a(n) ~ 3*Pi*2^(3*n-1) / (n*log(n)^2) * (1 - 2*(gamma + 2*log(2) + 2*log(3)) / log(n) + (3*gamma^2 + 12*log(2)*gamma + 12*gamma*log(3) + 24*log(2)*log(3) + 12*log(2)^2 + 12*log(3)^2 - Pi^2/2) / log(n)^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Sep 30 2019
G.f.: 2 - 1/B(x) where B(x) is the g.f. of A094061. - Jesiah Darnell, Sep 22 2023

A327751 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) is the constant term in the expansion of (-1 + Product_{j=1..n} (1 + x_j + 1/x_j))^k.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 8, 0, 1, 0, 6, 24, 26, 0, 1, 0, 0, 216, 264, 80, 0, 1, 0, 20, 1200, 5646, 2160, 242, 0, 1, 0, 0, 8840, 101520, 121200, 16080, 728, 0, 1, 0, 70, 58800, 2103740, 6136800, 2410326, 115464, 2186, 0, 1
Offset: 0

Views

Author

Seiichi Manyama, Oct 30 2019

Keywords

Comments

T(n,k) is the number of k-step closed walks (from origin to origin) in n-dimensional lattice, using steps (t_1,t_2, ... ,t_n) (t_j = -1, 1 or 0 for 1 <= j <= n) except for (0,0, ... ,0) (t_j = 0 for 1 <= j <= n).

Examples

			Square array begins:
   1, 0,   0,     0,       0,         0, ...
   1, 0,   2,     0,       6,         0, ...
   1, 0,   8,    24,     216,      1200, ...
   1, 0,  26,   264,    5646,    101520, ...
   1, 0,  80,  2160,  121200,   6136800, ...
   1, 0, 242, 16080, 2410326, 332810400, ...
		

Crossrefs

Columns k=0-3 give A000012, A000004, A024023, 24*A016212(n-2).
Rows n=0-4 give A000007, A126869, A094061, A328874, A328875.
Main diagonal is A326920.

Formula

T(n,k) = Sum_{j=0..k} (-1)^(k-j) * binomial(k,j) * A002426(j)^n.

A329077 Constant term in the expansion of ((Sum_{k=-3..3} x^k) * (Sum_{k=-3..3} y^k) - (Sum_{k=-2..2} x^k) * (Sum_{k=-2..2} y^k))^n.

Original entry on oeis.org

1, 0, 24, 72, 3336, 34800, 912840, 15661520, 355423880, 7241240160, 160151370624, 3461028611040, 76789098028104, 1700195813892576, 38037857914721808, 853169553940415712, 19240825799184080520, 435267116844063531456, 9882232970998312871232
Offset: 0

Views

Author

Seiichi Manyama, Nov 04 2019

Keywords

Comments

Also number of n-step closed paths (from origin to origin) in 2-dimensional lattice, using steps (t_1,t_2) (|t_1| + |t_2| = 6).

Crossrefs

Programs

  • PARI
    {a(n) = polcoef(polcoef((sum(k=-3, 3, x^k)*sum(k=-3, 3, y^k)-sum(k=-2, 2, x^k)*sum(k=-2, 2, y^k))^n, 0), 0)}
    
  • PARI
    {a(n) = polcoef(polcoef((sum(k=0, 6, (x^k+1/x^k)*(y^(6-k)+1/y^(6-k)))-x^6-1/x^6-y^6-1/y^6)^n, 0), 0)}
    
  • PARI
    f(n) = (x^(n+1)-1/x^n)/(x-1);
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(n, k)*polcoef(f(3)^k*f(2)^(n-k), 0)^2)

Formula

Conjecture: a(n) ~ 6 * 24^n / (73*Pi*n). - Vaclav Kotesovec, Nov 04 2019

A218274 Number of n-step paths from (0,0) to (1,0) where all diagonal, vertical and horizontal steps are allowed.

Original entry on oeis.org

0, 1, 4, 27, 168, 1140, 7800, 54845, 390320, 2815344, 20494320, 150442908, 1111782672, 8264558016, 61743361680, 463306724595, 3489942222624, 26378657835816, 199991245341888, 1520403553182800, 11587257160313120, 88506896001503616, 677426230547667744
Offset: 0

Views

Author

Jon Perry, Nov 01 2012

Keywords

Comments

Equivalent to which linear combinations of (-1,-1), (-1,0), (-1,1), (0,1), (0,-1), (1,1), (1,0), (1,-1) equal (1,0).

Examples

			a(2) = 4 because we have [0,1]+[1,-1], [1,1]+[0,-1] and the y-negatives [0,-1]+[1,1], [1,-1]+[0,1].
		

Crossrefs

Cf. A094061.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, n^2,
          ((9*n^4-9*n^3-8*n^2+4*n) *a(n-1)
          +4*(n-1)*(27*n^3-84*n^2+80*n-21) *a(n-2)
          +32*(3*n-1)*(n-1)*(n-2)^2 *a(n-3))/ (n*(n-1)*(n+1)*(3*n-4)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Nov 02 2012
  • Mathematica
    a[n_] := a[n] = If[n<3, n^2,
         ((9n^4-9n^3-8n^2+4n) a[n-1] +
         4(n-1)(27n^3-84n^2+80n-21) a[n-2] +
         32(3n-1)(n-1)(n-2)^2 a[n-3]) /
         (n(n-1)(n+1)(3n-4))];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Aug 29 2021, after Alois P. Heinz *)
  • Maxima
    a[0]:0$
    a[1]:1$
    a[2]:4$
    a[n]:= ((9*n^4-9*n^3-8*n^2+4*n)*a[n-1]+4*(n-1)*(27*n^3-84*n^2+80*n-21)*a[n-2]+32*(3*n-1)*(n-1)*(n-2)^2 *a[n-3])/(n*(n-1)*(n+1)*(3*n-4))$
    A218274(n):=a[n]$
    makelist(A218274(n),n,0,30); /* Martin Ettl, Nov 03 2012 */

Extensions

More terms from Joerg Arndt, Nov 02 2012
Previous Showing 11-20 of 20 results.