cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A227720 Round(1/s(n)), where s(n) = n*log(1+1/n) - (2n-1)/(2n).

Original entry on oeis.org

5, 16, 34, 57, 86, 121, 163, 210, 263, 322, 388, 459, 536, 619, 709, 804, 905, 1012, 1126, 1245, 1370, 1501, 1639, 1782, 1931, 2086, 2248, 2415, 2588, 2767, 2953, 3144, 3341, 3544, 3754, 3969, 4190, 4417, 4651, 4890, 5135, 5386, 5644, 5907, 6176, 6451, 6733
Offset: 1

Views

Author

Clark Kimberling, Jul 22 2013

Keywords

Comments

That s(n) > 0 for n >=1 follows from the chain 1 < log 2 < 3/4 < 2 log 3/2 < 5/6 < 3 log 4/3 < 7/8 < 4 log 5/4 < ... ; i.e., n log((n+1)/n) - (2n-1)/(2n) > 0 and (2n+1)/(2n+2) - n log((n+1)/n) > 0. For the first, closeness to 0 is indicated by A227719 and A227720, and for the second, by A227721 and a sequence which possibly equals A094159. Conjecture: the four sequences are linearly recurrent.

Crossrefs

Programs

  • Mathematica
    s[n_] := n*Log[1 + 1/n] - (2 n - 1)/(2 n);
    Table[Floor[1/s[n]], {n, 1, 100}]  (* A227719 *)
    Table[Round[1/s[n]], {n, 1, 100}]  (* A227720 *)

Formula

a(n) = -2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6) (conjectured).
G.f.: (-5 - 6 x - 7 x^2 - 5 x^3 - x^4)/((-1 + x)^3 (1 + x + x^2 + x^3)) (conjectured).

A227721 Floor(1/s(n)), where s(n) = (2n+1)/(2n+2) - n*log((n+1)/n).

Original entry on oeis.org

17, 44, 83, 134, 197, 272, 359, 458, 569, 692, 827, 974, 1133, 1304, 1487, 1682, 1889, 2108, 2339, 2582, 2837, 3104, 3383, 3674, 3977, 4292, 4619, 4958, 5309, 5672, 6047, 6434, 6833, 7244, 7667, 8102, 8549, 9008, 9479, 9962, 10457, 10964, 11483, 12014, 12557
Offset: 1

Views

Author

Clark Kimberling, Jul 22 2013

Keywords

Comments

That s(n) > 0 for n >=1 follows from the chain 1 < log 2 < 3/4 < 2 log 3/2 < 5/6 < 3 log 4/3 < 7/8 < 4 log 5/4 < ... ; i.e., n log((n+1)/n) - (2n-1)/(2n) > 0 and (2n+1)/(2n+2) - n log((n+1)/n) > 0. For the first, closeness to 0 is indicated by A227719 and A227720, and for the second, by A227721 and a sequence which possibly equals A094159. Conjecture: the four sequences are linearly recurrent.

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = (2 n + 1)/(2 n + 2) - n*Log[1 + 1/n]
    Table[Floor[1/s[n]], {n, 1, 100}] (* A227721 *)
    Table[Round[1/s[n]], {n, 1, 100}] (* conjecture: A094159 *)

Formula

a(n) = 2 + 9*n + 6*n^2 (conjectured).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) (conjectured).
G.f.: (-17 + 7 x - 2 x^2)/(-1 + x)^3 (conjectured).

A008730 Molien series 1/((1-x)^2*(1-x^12)) for 3-dimensional group [2,n] = *22n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 186, 192, 198, 204
Offset: 0

Views

Author

Keywords

Examples

			..1....2....3....4....5....6....7....8....9...10...11...12
.14...16...18...20...22...24...26...28...30...32...34...36
.39...42...45...48...51...54...57...60...63...66...69...72
.76...80...84...88...92...96..100..104..108..112..116..120
125..130..135..140..145..150..155..160..165..170..175..180
186..192..198..204..210..216..222..228..234..240..246..252
259..266..273..280..287..294..301..308..315..322..329..336
344..352..360..368..376..384..392..400..408..416..424..432
441..450..459..468..477..486..495..504..513..522..531..540
550..560..570..580..590..600..610..620..630..640..650..660
...
The columns are: A051866, A139267, A094159, A033579, A049452, A033581, A049453, A033580, A195319, A202804, A211014, A049598
- _Philippe Deléham_, Apr 03 2013
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/((1-x)^2*(1-x^12)) )); // G. C. Greubel, Jul 30 2019
    
  • Maple
    seq(coeff(series(1/(1-x)^2/(1-x^12), x, n+1), x, n), n=0..80);
  • Mathematica
    CoefficientList[Series[1/((1-x)^2*(1-x^12)), {x,0,70}], x] (* Vincenzo Librandi, Jun 11 2013 *)
    LinearRecurrence[{2,-1,0,0,0,0,0,0,0,0,0,1,-2,1},{1,2,3,4,5,6,7,8,9,10,11,12,14,16},70] (* Harvey P. Dale, Jan 01 2024 *)
  • PARI
    my(x='x+O('x^70)); Vec(1/((1-x)^2*(1-x^12))) \\ G. C. Greubel, Jul 30 2019
    
  • Sage
    (1/((1-x)^2*(1-x^12))).series(x, 70).coefficients(x, sparse=False) # G. C. Greubel, Jul 30 2019

Formula

G.f. 1/( (1-x)^3 * (1+x) *(1+x+x^2) *(1-x+x^2) * (1+x^2) *(1-x^2+x^4)). - R. J. Mathar, Aug 11 2021
From Mitch Harris, Sep 08 2008: (Start)
a(n) = Sum_{j=0..n+12} floor(j/12).
a(n-12) = (1/2)*floor(n/12)*(2*n - 10 - 12*floor(n/12)). (End)
a(n) = A221912(n+12). - Philippe Deléham, Apr 03 2013

Extensions

More terms from Vladimir Joseph Stephan Orlovsky, Mar 14 2010

A386477 a(0) = 1; thereafter a(n) = 2*(6*n^2 - 3*n + 1).

Original entry on oeis.org

1, 8, 38, 92, 170, 272, 398, 548, 722, 920, 1142, 1388, 1658, 1952, 2270, 2612, 2978, 3368, 3782, 4220, 4682, 5168, 5678, 6212, 6770, 7352, 7958, 8588, 9242, 9920, 10622, 11348, 12098, 12872, 13670, 14492, 15338, 16208, 17102, 18020, 18962, 19928, 20918, 21932, 22970, 24032, 25118, 26228, 27362, 28520, 29702, 30908, 32138, 33392, 34670
Offset: 0

Views

Author

Keywords

Comments

Definition: A regular hexagram of radius R is formed by placing six equally-spaced points P_0 .. P_5 around the boundary of a circle of radius R, and drawing line segments P_0 - P_2 - P_4 - P_0 and P_1 - P_3 - P_5 - P_1.
Theorem 1: a(n) is the maximum number of regions that can be formed in the plane by drawing n regular hexagrams with the same radius and the same center.
Conjecture 2: a(n) is the maximum number of regions that can be formed in the plane by drawing n regular hexagrams with any radii and any centers.
The following construction works for any n >= 1. Take 6*n equally-spaced points P_i around a circle, and draw hexagrams starting at P_i for i = 0, ..., n-1.
The resulting planar graph decomposes into 6*n triangular cells each with 2*n-1 cells (see the red triangle in the "Three pentagons" illustration), plus the interior and exterior regions, for a total of 12*n^2 - 6*n + 2 regions. There are 12*n^2 vertices, for n>0.

Crossrefs

See A077588, A069894, and A383466 for analogous sequences based on triangles, squares, and pentagrams.

Programs

  • Mathematica
    A386477[n_] := If[n == 0, 1, 6*n*(2*n - 1) + 2]; Array[A386477, 50, 0] (* or *)
    Join[{1}, 6*PolygonalNumber[6, Range[49]] + 2] (* or *)
    LinearRecurrence[{3, -3, 1}, {1, 8, 38, 92}, 50] (* Paolo Xausa, Jul 24 2025 *)

Formula

From Stefano Spezia, Jul 23 2025: (Start)
G.f.: (1 + 5*x + 17*x^2 + x^3)/(1 - x)^3.
E.g.f.: 2*exp(x)*(1 + 3*x + 6*x^2) - 1. (End)
a(n) = A152746(n) + 2, for n >= 1. - Paolo Xausa, Jul 24 2025

A194713 13 times hexagonal numbers: a(n) = 13*n*(2*n-1).

Original entry on oeis.org

0, 13, 78, 195, 364, 585, 858, 1183, 1560, 1989, 2470, 3003, 3588, 4225, 4914, 5655, 6448, 7293, 8190, 9139, 10140, 11193, 12298, 13455, 14664, 15925, 17238, 18603, 20020, 21489, 23010, 24583, 26208, 27885, 29614, 31395, 33228, 35113, 37050, 39039, 41080, 43173
Offset: 0

Views

Author

Omar E. Pol, Oct 02 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 13, ..., in the square spiral whose vertices are the generalized 15-gonal numbers.

Crossrefs

Programs

Formula

a(n) = 26*n^2 - 13*n = 13*A000384(n).
a(n) = a(n-1) + 52*n - 39, a(0)=0. - Vincenzo Librandi, Oct 03 2011
From Elmo R. Oliveira, Dec 15 2024: (Start)
G.f.: 13*x*(1 + 3*x)/(1 - x)^3.
E.g.f.: 13*x*(1 + 2*x)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)
Previous Showing 21-25 of 25 results.