cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A364214 Numbers whose canonical representation as a sum of distinct Jacobsthal numbers (A280049) is palindromic.

Original entry on oeis.org

1, 2, 4, 5, 6, 10, 12, 15, 18, 21, 22, 30, 34, 42, 44, 49, 58, 63, 66, 71, 80, 85, 86, 102, 110, 126, 130, 146, 154, 170, 172, 183, 198, 209, 218, 229, 244, 255, 258, 269, 284, 295, 304, 315, 330, 341, 342, 374, 390, 422, 430, 462, 478, 510, 514, 546, 562, 594
Offset: 1

Views

Author

Amiram Eldar, Jul 14 2023

Keywords

Comments

The even-indexed Jacobsthal numbers A001045(2*n) = A002450(n) = (4^n-1)/3, for n >= 1, are terms since their representation is 2*n-1 1's.
A001045(2*n+1) - 1 = A020988(n) = (2/3)*(4^n-1) is a term for n >= 1, since its representation is 2*n 1's.
A001045(n) + 1 = A128209(n) is a term for n >= 0, since its representation for n = 0 is 1 and its representation for n >= 1 is n-1 0's between 2 1's.
A160156(n) is a term for n >= 0 since its representation is n 0's interleaved with n+1 1's.

Examples

			The first 10 terms are:
   n  a(n)  A280049(a(n))
  --  ----  -------------
   1     1              1
   2     2             11
   3     4            101
   4     5            111
   5     6           1001
   6    10           1111
   7    12          10001
   8    15          10101
   9    18          11011
  10    21          11111
		

Crossrefs

Programs

  • Mathematica
    Position[Select[Range[1000], EvenQ[IntegerExponent[#, 2]] &], _?(PalindromeQ[IntegerDigits[#, 2]] &)] // Flatten
  • PARI
    s(n) = if(n < 2, n > 0, n = s(n-1); until(valuation(n, 2)%2 == 0, n++); n); \\ A003159
    is(n) = {my(d = binary(s(n))); d == Vecrev(d);}

A286710 Numbers n whose Zeckendorf representation is of the form ww, for w a nonempty block of digits.

Original entry on oeis.org

7, 16, 39, 54, 97, 120, 134, 246, 282, 304, 340, 376, 631, 688, 723, 780, 837, 872, 929, 964, 1631, 1722, 1778, 1869, 1960, 2016, 2107, 2163, 2254, 2345, 2401, 2492, 2583, 4236, 4382, 4472, 4618, 4764, 4854, 5000, 5090, 5236, 5382, 5472, 5618, 5764, 5854, 6000, 6090, 6236, 6382, 6472, 6618, 6708, 11035, 11270, 11415
Offset: 1

Views

Author

Jeffrey Shallit, May 13 2017

Keywords

Comments

The Zeckendorf representation of an integer n expresses n as a sum of non-adjacent Fibonacci numbers. It can be expressed as a word over {0,1} giving the coefficients, starting with the most significant digit.

Examples

			The representation of 7 is 1010, which is of the form ww with w = 10.
		

Crossrefs

Cf. A000045, A014417, A094202 (the same sequence, but for palindromes).

Programs

  • Maple
    F:= [seq(combinat:-fibonacci(i),i=2..21)]:
    ext:= proc(L)
      if L[2] = 0 then [0,op(L)], [0,1,op(L[2..-1])]
      else [0,op(L)]
      fi
    end proc:
    build:= proc(L) local i,k;
      k:= nops(L);
      add((F[i]+F[k+i])*L[i],i=1..k)
    end proc:
    R[2]:= [[0,1]]:
    for i from 3 to 10 do R[i]:= map(ext,R[i-1]) od:
    map(build, [seq(op(R[i]),i=2..10)]); # Robert Israel, Feb 19 2019
  • Mathematica
    Reap[Do[ w = IntegerDigits[k, 2]; p = 1 + Flatten@ Position[ Reverse@ Join[w, w], 1]; If[ Min@ Differences@ p > 1, Sow@ Total@ Fibonacci@ p], {k, 2^10 - 1}]][[2, 1]] (* Giovanni Resta, May 13 2017 *)

Formula

a(A000045(n)) = A000045(n+1) + A000045(2n+1) for n >= 2. - Robert Israel, Feb 19 2019

A288252 Positive integers n such that the Fibonacci (or Zeckendorf) representation of n^2 is a palindrome.

Original entry on oeis.org

1, 2, 3, 8, 21, 38, 55, 80, 144, 168, 174, 195, 314, 377, 682, 987, 2584, 6360, 6765, 12238, 13301, 17711, 34985, 46368, 54096, 66483, 87849, 121393, 219602, 317811, 684704, 832040, 1486717, 2178309, 3325460, 3940598, 5702887, 6151102, 10008701, 14930352
Offset: 1

Views

Author

Jeffrey Shallit, Jun 07 2017

Keywords

Comments

The sequence is infinite because F(2n)^2 = A049684(n) has Fibonacci (or Zeckendorf) representation (1000)^(n-1) 1.

Examples

			38 is in the sequence because 38^2 = 1444 has Fibonacci representation 101000101000101, which is a palindrome.
		

Crossrefs

Cf. A014417, which explains Fibonacci representation. Cf. A094202.

Programs

  • Maple
    for n from 1 do
        zeck := A014417(n^2) ;
        if isA002113(zeck) then
            printf("%d,\n",n);
        end if;
    end do: # R. J. Mathar, Jun 16 2017

Extensions

a(35)-a(39) from Alois P. Heinz, Jun 14 2018
a(40) from Giovanni Resta, Jun 15 2018

A354884 Numbers whose skew binary representation (A169683) is palindromic.

Original entry on oeis.org

0, 1, 2, 4, 8, 11, 16, 26, 32, 39, 50, 57, 64, 86, 98, 120, 128, 143, 166, 181, 194, 209, 232, 247, 256, 302, 326, 372, 386, 432, 456, 502, 512, 543, 590, 621, 646, 677, 724, 755, 770, 801, 848, 879, 904, 935, 982, 1013, 1024, 1118, 1166, 1260, 1286, 1380, 1428
Offset: 1

Views

Author

Amiram Eldar, Jun 10 2022

Keywords

Comments

The sequence of powers of 2 (A000079) is a subsequence since A169683(1) = 1, A169683(2) = 2, and for n > 2 A169683(2^n) = 10..01 with n-1 0's between the two 1's.
A000295 is a subsequence since A169683(A000295(0)) = A169683(A000295(1)) = 0 and for n>1 A169683(A000295(n)) is a repunit with n-1 1's.
A144414 is a subsequence since A169683(A144414(1)) = 1 and for n>1 A169683(A144414(n)) = 1010..01 with n-1 0's interleaved with n 1's.

Examples

			The first 10 terms are:
   n  a(n)  A169683(a(n))
  --  ----  -------------
   1    0               0
   2    1               1
   3    2               2
   4    4              11
   5    8             101
   6   11             111
   7   16            1001
   8   26            1111
   9   32           10001
  10   39           10101
		

Crossrefs

Programs

  • Mathematica
    f[0] = 0; f[n_] := Module[{m = Floor@Log2[n + 1], d = n, pos}, Reap[While[m > 0, pos = 2^m - 1; Sow@Floor[d/pos]; d = Mod[d, pos]; --m;]][[2, 1]] // FromDigits]; Select[Range[0, 15000], PalindromeQ[f[#]] &] (* after N. J. A. Sloane at A169683 *)

A356395 Nonnegative numbers k such that the negaFibonacci representation of k (A215022(k)) is palindromic.

Original entry on oeis.org

0, 1, 3, 6, 8, 11, 14, 21, 24, 35, 40, 50, 55, 58, 66, 82, 90, 108, 118, 126, 144, 147, 176, 189, 205, 234, 247, 273, 286, 296, 325, 338, 364, 377, 380, 401, 443, 464, 511, 527, 548, 590, 611, 658, 684, 705, 752, 762, 783, 825, 846, 893, 919, 940, 987, 990
Offset: 1

Views

Author

Rémy Sigrist, Aug 05 2022

Keywords

Comments

See A094202 and A356396 for similar sequences.

Examples

			The first terms are:
  n   a(n)  A215022(a(n))
  --  ----  -------------
   1     0              0
   2     1              1
   3     3            101
   4     6          10001
   5     8          10101
   6    11        1001001
   7    14        1000001
   8    21        1010101
   9    24      100101001
  10    35      100000001
		

Crossrefs

Programs

  • PARI
    is(n) = { my (v=0, neg=0, pos=0, f); for (e=0, oo, f=fibonacci(-1-e); if (f<0, neg+=f, pos+=f); if (neg <=n && n <= pos, while (n, if (f<0, neg-=f, pos-=f); if (neg > n || n > pos, v+=2^e; n-=f); f=fibonacci(-1-e--)); my (b=binary(v)); return (b==Vecrev(b)))) }

A356396 Nonnegative numbers k such that the negaFibonacci representation of -k (A215023(k)) is palindromic.

Original entry on oeis.org

0, 2, 7, 20, 26, 44, 54, 73, 112, 143, 159, 196, 212, 264, 290, 350, 376, 426, 492, 518, 568, 675, 756, 798, 905, 986, 1028, 1125, 1167, 1280, 1361, 1403, 1500, 1542, 1683, 1751, 1908, 1976, 2107, 2290, 2358, 2515, 2583, 2714, 2887, 2955, 3086, 3275, 3343
Offset: 1

Views

Author

Rémy Sigrist, Aug 05 2022

Keywords

Comments

See A094202 and A356395 for similar sequences.

Examples

			The first terms are:
  n   a(n)  A215023(a(n))
  --  ----  -------------
   1     0              0
   2     2           1001
   3     7         100001
   4    20       10000001
   5    26       10100101
   6    44     1001001001
   7    54     1000000001
   8    73     1010000101
   9   112   100100001001
  10   143   100000000001
		

Crossrefs

Programs

  • PARI
    is(n) = { my (v=0, neg=0, pos=0, f); n=-n; for (e=0, oo, f=fibonacci(-1-e); if (f<0, neg+=f, pos+=f); if (neg <=n && n <= pos, while (n, if (f<0, neg-=f, pos-=f); if (neg > n || n > pos, v+=2^e; n-=f); f=fibonacci(-1-e--)); my (b=binary(v)); return (b==Vecrev(b)))) }

A364122 Numbers whose Stolarsky representation (A364121) is palindromic.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 13, 15, 18, 21, 23, 34, 36, 40, 45, 50, 55, 66, 71, 89, 91, 95, 108, 113, 120, 128, 136, 144, 159, 176, 196, 204, 233, 235, 239, 261, 273, 286, 291, 298, 319, 327, 338, 351, 364, 377, 400, 426, 464, 490, 518, 550, 563, 610, 612, 616, 654, 667
Offset: 1

Views

Author

Amiram Eldar, Jul 07 2023

Keywords

Comments

The positive Fibonacci numbers (A000045) are terms since the Stolarsky representation of Fibonacci(1) = Fibonacci(2) is 0 and the Stolarsky representation of Fibonacci(n) is n-2 1's for n >= 3.
Fiboancci(2*n+1) + 2 is a term for n >= 3, since its Stolarsky representation is n-1 0's between two 1's.

Examples

			The first 10 terms are:
   n  a(n)  A364121(a(n))
  --  ----  -------------
   1     1  0
   2     2  1
   3     3  11
   4     5  111
   5     6  101
   6     8  1111
   7    13  11111
   8    15  1001
   9    18  11011
  10    21  111111
		

Crossrefs

Programs

  • Mathematica
    stol[n_] := stol[n] = If[n == 1, {}, If[n != Round[Round[n/GoldenRatio]*GoldenRatio], Join[stol[Floor[n/GoldenRatio^2] + 1], {0}], Join[stol[Round[n/GoldenRatio]], {1}]]];
    stolPalQ[n_]:= PalindromeQ[stol[n]]; Select[Range[700], stolPalQ]
  • PARI
    stol(n) = {my(phi=quadgen(5)); if(n==1, [], if(n != round(round(n/phi)*phi), concat(stol(floor(n/phi^2) + 1), [0]), concat(stol(round(n/phi)), [1])));}
    is(n) = {my(s = stol(n)); s == Vecrev(s);}

A364378 Numbers whose representation in Jacobsthal greedy base (A265747) is palindromic.

Original entry on oeis.org

0, 1, 2, 4, 6, 9, 12, 20, 22, 27, 36, 41, 44, 60, 68, 84, 86, 97, 112, 123, 132, 143, 158, 169, 172, 204, 220, 252, 260, 292, 308, 340, 342, 363, 396, 417, 432, 453, 486, 507, 516, 537, 570, 591, 606, 627, 660, 681, 684, 748, 780, 844, 860, 924, 956, 1020, 1028
Offset: 1

Views

Author

Amiram Eldar, Jul 21 2023

Keywords

Comments

A128209(n) = A001045(n) + 1 is a term for n >= 3, since its representation is two 1's with n-3 0's between them.
A084639(n) is a term for n >= 1 since its representation is n 1's.
A014825(n) is a term for n >= 1 since its representation is n-1 0's interleaved with n 1's.

Examples

			The first 10 terms are:
   n  a(n)  A265747(a(n))
  --  ----  -------------
   1     0              0
   2     1              1
   3     2              2
   4     4             11
   5     6            101
   6     9            111
   7    12           1001
   8    20           1111
   9    22          10001
  10    27          10101
		

Crossrefs

Programs

  • Mathematica
    palJacobQ[n_] := PalindromeQ[A265747[n]]; Select[Range[0, 1000], palJacobQ] (* using A265747[n] *)
  • PARI
    is(n) = {my(dig = digits(A265747(n))); dig == Vecrev(dig);} \\ using A265747(n)

A381580 Numbers whose Chung-Graham representation (A381579) is palindromic.

Original entry on oeis.org

0, 1, 2, 4, 9, 12, 15, 18, 22, 33, 44, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128, 136, 145, 174, 203, 232, 261, 290, 319, 348, 378, 399, 420, 441, 462, 483, 504, 525, 546, 567, 588, 609, 630, 651, 672, 693, 714, 735, 756, 777, 798, 819, 840, 861, 882, 903, 924, 945, 966, 988
Offset: 1

Views

Author

Amiram Eldar, Feb 28 2025

Keywords

Comments

The numbers of the form Fibonacci(2*k) + 1 (A055588) are all terms since A381579(A055588(0)) = 1, A381579(A055588(1)) = 2, and A381579(A055588(k)) = 10^(k-1)+1 (i.e., two 1's with k-2 0's between them) for k >= 2.

Examples

			The first 10 terms are:
   n  a(n) A381579(a(n))
   ---------------------
   1   0               0
   2   1               1
   3   2               2
   4   4              11
   5   9             101
   6  12             111
   7  15             121
   8  18             202
   9  22            1001
  10  33            1111
		

Crossrefs

Subsequence: A055588.
Similar sequences: A002113, A006995, A094202, A331191.

Programs

  • Mathematica
    f[n_] := f[n] = Fibonacci[2*n]; q[n_] := Module[{s = 0, m = n, k}, While[m > 0, k = 1; While[m > f[k], k++]; If[m < f[k], k--]; If[m >= 2*f[k], s += 2*10^(k-1); m -= 2*f[k], s += 10^(k-1); m -= f[k]]]; PalindromeQ[s]]; Select[Range[0, 1000], q]
  • PARI
    mx = 20; fvec = vector(mx, i, fibonacci(2*i)); f(n) = if(n <= mx, fvec[n], fibonacci(2*n));
    isok(n) = {my(s = 0, m = n, k, d); while(m > 0, k = 1; while(m > f(k), k++); if(m < f(k), k--); if(m >= 2*f(k), s += 2*10^(k-1); m -= 2*f(k), s += 10^(k-1); m -= f(k))); d = digits(s); Vecrev(d) == d;}

A331192 Numbers whose Zeckendorf representation (A014417) and dual Zeckendorf representation (A104326) are both palindromic.

Original entry on oeis.org

0, 1, 4, 6, 12, 22, 33, 64, 88, 174, 232, 462, 609, 1216, 1596, 3190, 4180, 8358, 10945, 21888, 28656, 57310, 75024, 150046, 196417, 392832, 514228, 1028454, 1346268, 2692534, 3524577, 7049152, 9227464, 18454926, 24157816, 48315630, 63245985, 126491968, 165580140
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2020

Keywords

Comments

Apparently union of numbers of the form F(2*k - 1) - 1 (k > 0) and numbers of the form 2 * F(2*k - 1) - 4 (k > 1), where F(m) is the m-th Fibonacci number.
The numbers of the form F(2*k - 1) - 1 have the same Zeckendorf and dual Zeckendorf representations. For k > 1 the representation is 1010...01, k-1 1's interleaved with k-2 0's.

Examples

			6 is a term since its Zeckendorf representation, 1001, and its dual Zeckendorf representation, 111, are both palindromic.
		

Crossrefs

Programs

  • Mathematica
    mirror[dig_, s_] := Join[dig, s, Reverse[dig]];
    select[v_, mid_] := Select[v, Length[#] == 0 || Last[#] != mid &];
    fib[dig_] := Plus @@ (dig*Fibonacci[Range[2, Length[dig] + 1]]);
    ndig = 12; pals1 = Rest[IntegerDigits /@ FromDigits /@ Select[Tuples[{0, 1}, ndig], SequenceCount[#, {1, 1}] == 0 &]];
    zeckPals = Union @ Join[{0, 1}, fib /@ Join[mirror[#, {}] & /@ (select[pals1, 1]), mirror[#, {1}] & /@ (select[pals1, 1]), mirror[#, {0}] & /@ pals1]];
    pals2 = Join[{{}}, Rest[Select[IntegerDigits[Range[0, 2^ndig - 1], 2], SequenceCount[#, {0, 0}] == 0 &]]];
    dualZeckPals = Union@Join[{0}, fib /@ Join[mirror[#, {}] & /@ (select[pals2, 0]), mirror[#, {0}] & /@ (select[pals2, 0]), mirror[#, {1}] & /@ pals2]];
    Intersection[zeckPals, dualZeckPals]
Previous Showing 21-30 of 30 results.