cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A229760 Decimal expansion of 25 - 10*sqrt(5).

Original entry on oeis.org

2, 6, 3, 9, 3, 2, 0, 2, 2, 5, 0, 0, 2, 1, 0, 3, 0, 3, 5, 9, 0, 8, 2, 6, 3, 3, 1, 2, 6, 8, 7, 2, 3, 7, 6, 4, 5, 5, 9, 3, 8, 1, 6, 4, 0, 3, 8, 8, 4, 7, 4, 2, 7, 5, 7, 2, 9, 1, 0, 2, 7, 5, 4, 5, 8, 9, 4, 7, 9, 0, 7, 4, 3, 6, 2, 1, 9, 5, 1, 0, 0, 5, 8, 5, 5, 8, 5, 5, 9, 1, 6, 2, 1, 2, 1, 7, 7, 2, 5, 0, 3, 0, 4, 9
Offset: 1

Views

Author

Joost Gielen, Sep 28 2013

Keywords

Comments

Apart from the first digit the same as A187799.

Examples

			2.639320225002103035908263312687237645593816403884742757291027545894790...
		

Crossrefs

Programs

A081012 a(n) = Fibonacci(4n+1) - 2, or Fibonacci(2n+2)*Lucas(2n-1).

Original entry on oeis.org

3, 32, 231, 1595, 10944, 75023, 514227, 3524576, 24157815, 165580139, 1134903168, 7778742047, 53316291171, 365435296160, 2504730781959, 17167680177563, 117669030460992, 806515533049391, 5527939700884755, 37889062373143904
Offset: 1

Views

Author

R. K. Guy, Mar 01 2003

Keywords

References

  • Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75.

Crossrefs

Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers), A094874.

Programs

  • GAP
    List([1..30], n-> Fibonacci(4*n+1) -2); # G. C. Greubel, Jul 14 2019
  • Magma
    [Fibonacci(4*n+1)-2: n in [1..30]]; // Vincenzo Librandi, Apr 20 2011
    
  • Maple
    with(combinat) for n from 0 to 25 do printf(`%d,`,fibonacci(4*n+1)-2) od # James Sellers, Mar 03 2003
  • Mathematica
    Fibonacci[4*Range[30]+1] -2 (* G. C. Greubel, Jul 14 2019 *)
  • PARI
    vector(30, n, fibonacci(4*n+1)-2) \\ G. C. Greubel, Jul 14 2019
    
  • Sage
    [fibonacci(4*n+1)-2 for n in (1..30)] # G. C. Greubel, Jul 14 2019
    

Formula

a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
G.f.: x*(3+8*x-x^2)/((1-x)*(1-7*x+x^2)). - Colin Barker, Jun 22 2012
a(n) = 7*a(n-1) - a(n-2) + 10, n>=3. - R. J. Mathar, Nov 07 2015
Product_{n>=1} (1 + 1/a(n)) = (5-sqrt(5))/2 = A094874. - Amiram Eldar, Nov 28 2024

A109866 9's complement of the digits of the golden ratio phi (A001622): 9.999999999999... - 1.6180339887... = 8.3819660112501051517954131656334...

Original entry on oeis.org

8, 3, 8, 1, 9, 6, 6, 0, 1, 1, 2, 5, 0, 1, 0, 5, 1, 5, 1, 7, 9, 5, 4, 1, 3, 1, 6, 5, 6, 3, 4, 3, 6, 1, 8, 8, 2, 2, 7, 9, 6, 9, 0, 8, 2, 0, 1, 9, 4, 2, 3, 7, 1, 3, 7, 8, 6, 4, 5, 5, 1, 3, 7, 7, 2, 9, 4, 7, 3, 9, 5, 3, 7, 1, 8, 1, 0, 9, 7, 5, 5, 0, 2, 9, 2, 7, 9, 2, 7, 9, 5, 8, 1, 0, 6, 0, 8, 8, 6, 2, 5, 1, 5, 2, 4, 5, 9, 1, 1, 9, 2, 4, 6, 1
Offset: 1

Views

Author

Amarnath Murthy, Jul 09 2005

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=120},PadRight[{},nn,9]-RealDigits[GoldenRatio,10,nn][[1]]] (* Harvey P. Dale, Jun 25 2018 *)

A229780 Decimal expansion of (3+sqrt(5))/10.

Original entry on oeis.org

5, 2, 3, 6, 0, 6, 7, 9, 7, 7, 4, 9, 9, 7, 8, 9, 6, 9, 6, 4, 0, 9, 1, 7, 3, 6, 6, 8, 7, 3, 1, 2, 7, 6, 2, 3, 5, 4, 4, 0, 6, 1, 8, 3, 5, 9, 6, 1, 1, 5, 2, 5, 7, 2, 4, 2, 7, 0, 8, 9, 7, 2, 4, 5, 4, 1, 0, 5, 2, 0, 9, 2, 5, 6, 3, 7, 8, 0, 4, 8, 9, 9, 4, 1, 4, 4, 1, 4, 4, 0, 8, 3, 7, 8, 7, 8, 2, 2, 7
Offset: 0

Views

Author

Joost Gielen, Sep 29 2013

Keywords

Comments

sqrt((3+sqrt(5))/10) = sqrt(phi^2/5) = (5+sqrt(5))/10 = (3+sqrt(5))/10 + 2/10 = 0.723606797... .
Essentially the same as A134972, A134945, A098317 and A002163. - R. J. Mathar, Sep 30 2013
Equals one tenth of the limit of (G(n+2)+G(n+1)+G(n-1)+G(n-2))/G(n), where G(n) is any nonzero sequence satisfying the recurrence G(n+1) = G(n) + G(n-1) including A000032 and A000045, as n --> infinity. - Richard R. Forberg, Nov 17 2014
3+sqrt(5) is the perimeter of a golden rectangle with a unit width. - Amiram Eldar, May 18 2021
Constant x such that x = sqrt(x) - 1/5. - Andrea Pinos, Jan 15 2024

Examples

			0.5236067977499...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[GoldenRatio^2/5,10,120][[1]] (* Harvey P. Dale, Dec 02 2014 *)

Formula

(3+sqrt(5))/10 = (phi/sqrt(5))^2 = phi^2/5 where phi is the golden ratio.

A229759 Decimal expansion of (25-10*sqrt(5))/2.

Original entry on oeis.org

1, 3, 1, 9, 6, 6, 0, 1, 1, 2, 5, 0, 1, 0, 5, 1, 5, 1, 7, 9, 5, 4, 1, 3, 1, 6, 5, 6, 3, 4, 3, 6, 1, 8, 8, 2, 2, 7, 9, 6, 9, 0, 8, 2, 0, 1, 9, 4, 2, 3, 7, 1, 3, 7, 8, 6, 4, 5, 5, 1, 3, 7, 7, 2, 9, 4, 7, 3, 9, 5, 3, 7, 1, 8, 1, 0, 9, 7, 5, 5, 0, 2, 9, 2, 7, 9, 2, 7, 9, 5, 8, 1, 0, 6, 0, 8, 8, 6, 2, 5, 1, 5, 2, 4
Offset: 1

Views

Author

Joost Gielen, Sep 28 2013

Keywords

Comments

Essentially the same as A225667 and A132338. - R. J. Mathar, Sep 30 2013

Crossrefs

Formula

(25-10*sqrt(5))/2 = 25/2 - 5*sqrt(5) = 1.319660... .

A371604 Decimal expansion of 5 * sqrt(3 - phi) / (2 * Pi).

Original entry on oeis.org

9, 3, 5, 4, 8, 9, 2, 8, 3, 7, 8, 8, 6, 3, 9, 0, 3, 3, 2, 1, 2, 9, 1, 9, 0, 6, 6, 1, 5, 2, 9, 8, 2, 8, 1, 6, 7, 9, 6, 7, 8, 1, 9, 2, 7, 2, 9, 8, 4, 9, 8, 1, 2, 4, 7, 0, 6, 6, 5, 0, 1, 9, 8, 7, 0, 2, 5, 5, 5, 3, 3, 8, 9, 8, 4, 2, 8, 9, 2, 2, 6, 7, 8, 8, 0, 7, 9, 8, 8, 6, 2, 8, 4, 0, 8, 9, 8, 5, 9
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 01 2024

Keywords

Examples

			0.93548928378863903321291906615298281...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[5 Sqrt[3 - GoldenRatio]/(2 Pi), 10, 99][[1]]

Formula

Equals Product_{k>=1} (1 - 1/(5*k)^2).
Equals A258403/Pi. - Hugo Pfoertner, Apr 01 2024

A348757 Decimal expansion of the area of a regular pentagram inscribed in a unit-radius circle.

Original entry on oeis.org

1, 1, 2, 2, 5, 6, 9, 9, 4, 1, 4, 4, 8, 9, 6, 3, 4, 3, 1, 1, 0, 4, 8, 6, 2, 8, 7, 9, 4, 9, 3, 8, 1, 6, 9, 6, 8, 9, 4, 8, 0, 3, 1, 2, 0, 5, 8, 0, 2, 7, 0, 8, 7, 9, 8, 4, 8, 6, 1, 9, 6, 5, 8, 5, 4, 2, 2, 0, 1, 8, 8, 9, 1, 1, 9, 7, 5, 5, 2, 0, 6, 6, 4, 9, 1, 0, 7, 6, 4, 4, 3, 7, 7, 3, 3, 5, 6, 4, 5, 1, 2, 2, 1, 0, 3
Offset: 1

Views

Author

Amiram Eldar, Nov 12 2021

Keywords

Comments

An algebraic number of degree 4. The smaller of the two positive roots of the equation 16*x^4 - 2500*x^2 + 3125 = 0.

Examples

			1.12256994144896343110486287949381696894803120580270...
		

References

  • Robert B. Banks, Slicing Pizzas, Racing Turtles, and Further Adventures in Applied Mathematics, Princeton University Press, 2012, p. 15.

Crossrefs

Programs

  • Mathematica
    RealDigits[5*Sin[Pi/5]/GoldenRatio^2, 10, 100][[1]]

Formula

Equals 5*sin(Pi/5)/phi^2, where phi is the golden ratio (A001622).
Equals 5/(cot(Pi/5) + cot(Pi/10)).
Equals 10*tan(Pi/10)/(3 - tan(Pi/10)^2).
Equals (5/2)*sqrt((25 -11*sqrt(5))/2).
Equals 5*(5 - sqrt(5))/(4*sqrt(5 + 2*sqrt(5))) = A094874 * A179050 = 10 * A094874 / A344172.
Previous Showing 11-17 of 17 results.