A078988
Chebyshev sequence with Diophantine property.
Original entry on oeis.org
1, 65, 4289, 283009, 18674305, 1232221121, 81307919681, 5365090477825, 354014663616769, 23359602708228929, 1541379764079492545, 101707704826538279041, 6711167138787446924161, 442835323455144958715585, 29220420180900779828304449, 1928104896615996323709378049
Offset: 0
(x,y) = (4,1), (268,65), (17684,4289), ... give the positive integer solutions to x^2 - 17*y^2 =-1.
- Colin Barker, Table of n, a(n) for n = 0..549
- A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929. See Vol. 1, page xxxv.
- Tanya Khovanova, Recursive Sequences
- Giovanni Lucca, Integer Sequences and Circle Chains Inside a Hyperbola, Forum Geometricorum (2019) Vol. 19, 11-16.
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (66,-1).
-
a:=[1,65];; for n in [3..20] do a[n]:=66*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Aug 01 2019
-
I:=[1, 65]; [n le 2 select I[n] else 66*Self(n-1) - Self(n-2): n in [1..20]]; // G. C. Greubel, Aug 01 2019
-
CoefficientList[Series[(1-x)/(1-66x+x^2), {x,0,20}], x] (* Michael De Vlieger, Apr 15 2019 *)
LinearRecurrence[{66,-1}, {1,65}, 21] (* G. C. Greubel, Aug 01 2019 *)
-
Vec((1-x)/(1-66*x+x^2) + O(x^20)) \\ Colin Barker, Jun 15 2015
-
((1-x)/(1-66*x+x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Aug 01 2019
A098493
Triangle T(n,k) read by rows: difference between A098489 and A098490 at triangular rows.
Original entry on oeis.org
1, 0, -1, -1, -1, 1, -1, 1, 2, -1, 0, 3, 0, -3, 1, 1, 2, -5, -2, 4, -1, 1, -2, -7, 6, 5, -5, 1, 0, -5, 0, 15, -5, -9, 6, -1, -1, -3, 12, 9, -25, 1, 14, -7, 1, -1, 3, 15, -18, -29, 35, 7, -20, 8, -1, 0, 7, 0, -42, 14, 63, -42, -20, 27, -9, 1, 1, 4, -22, -24, 85, 14, -112, 42
Offset: 0
Triangle begins:
1;
0, -1;
-1, -1, 1;
-1, 1, 2, -1;
0, 3, 0, -3, 1;
...
-
A098493 := proc (n, k)
add((-1)^(k+binomial(n-j+1,2))*binomial(floor((1/2)*n+(1/2)*j),j)* binomial(j,k), j = k..n);
end proc:
seq(seq(A098493(n, k), k = 0..n), n = 0..10); # Peter Bala, Jul 13 2021
-
T(n,k)=if(k>n||k<0||n<0,0,if(k>=n-1,(-1)^n*if(k==n,1,-k),if(n==1,0,if(k==0,T(n-1,0)-T(n-2,0),T(n-1,k)-T(n-2,k)-T(n-1,k-1)))))
A162997
Array A(n,k) read by antidiagonals downward (n >= 0, k >= 1): the bottom-right element of the 2 X 2 matrix [1,n; 1,n+1] raised to k-th power.
Original entry on oeis.org
1, 1, 2, 1, 5, 3, 1, 13, 11, 4, 1, 34, 41, 19, 5, 1, 89, 153, 92, 29, 6, 1, 233, 571, 436, 169, 41, 7, 1, 610, 2131, 2089, 985, 281, 55, 8, 1, 1597, 7953, 10009, 5741, 1926, 433, 71, 9
Offset: 0
The array begins:
1,...1,...1,....1,....1,.....1,.....1,...
2,...5,..13,...34,...89,...233....610,...
3,..11,..41,..153,..571,..2131,..........
4,..19,..91,..436,.2089,.................
5,..29,.169,..985,.......................
6,..41,.281,.............................
7,..55,..................................
8,.......................................
...
A098495
Array T(r,c) read by antidiagonals: values of triangle A098493 interpreted as polynomials, r >= 0.
Original entry on oeis.org
1, 1, 0, 1, -1, -1, 1, -2, -1, -1, 1, -3, 1, 1, 0, 1, -4, 5, 1, 1, 1, 1, -5, 11, -7, -2, -1, 1, 1, -6, 19, -29, 9, 1, -1, 0, 1, -7, 29, -71, 76, -11, 1, 1, -1, 1, -8, 41, -139, 265, -199, 13, -2, 1, -1, 1, -9, 55, -239, 666, -989, 521, -15, 1, -1, 0, 1, -10, 71, -377, 1393, -3191, 3691, -1364, 17, 1, -1, 1, 1, -11, 89, -559
Offset: 0
Array begins
1, 0, -1, -1, 0, 1, 1, 0, -1, ...
1, -1, -1, 1, 1, -1, -1, 1, 1, ...
1, -2, 1, 1, -2, 1, 1, -2, 1, ...
1, -3, 5, -7, 9, -11, 13, -15, ...
1, -4, 11, -29, 76, -199, 521, ...
1, -5, 19, -71, 265, -989, 3691, ...
...
See
A094954 (with negative k) for negative r and more formulas and programs.
-
T[r_, 1] := 1; T[r_, 2] := -r - 1; T[r_, c_] := -r*T[r, c - 1] - T[r, c - 2]; Flatten[ Table[ T[n - i, i], {n, 0, 11}, {i, n + 1}]] (* Robert G. Wilson v, May 10 2005 *)
-
{ t(r,c)=if(c>r||c<0||r<0,0,if(c>=r-1,(-1)^r*if(c==r,1,-c),if(r==1,0,if(c==0,t(r-1,0)-t(r-2,0),t(r-1,c)-t(r-2,c)-t(r-1,c-1))))) }
T(r,c)=sum(i=0,c,t(c,i)*r^i);
matrix(5,5,n,k,T(n-1,k-1))
A073134
Table by antidiagonals of T(n,k)=n*T(n,k-1)-T(n,k-2) starting with T(n,1)=1.
Original entry on oeis.org
1, 1, 1, 0, 2, 1, -1, 3, 3, 1, -1, 4, 8, 4, 1, 0, 5, 21, 15, 5, 1, 1, 6, 55, 56, 24, 6, 1, 1, 7, 144, 209, 115, 35, 7, 1, 0, 8, 377, 780, 551, 204, 48, 8, 1, -1, 9, 987, 2911, 2640, 1189, 329, 63, 9, 1, -1, 10, 2584, 10864, 12649, 6930, 2255, 496, 80, 10, 1, 0, 11, 6765, 40545, 60605, 40391, 15456, 3905, 711, 99, 11, 1, 1, 12
Offset: 1
Rows start:
1, 1, 0, -1, -1, 0, 1, ...;
1, 2, 3, 4, 5, 6, 7, ...;
1, 3, 8, 21, 55, 144, 377, ...;
1, 4, 15, 56, 209, 780, 2911, ...;
...
Rows include
A010892,
A000027,
A001906,
A001353,
A004254,
A001109,
A004187,
A001090,
A018913,
A004189,
A004190. Columns include (with some gaps)
A000012,
A000027,
A005563,
A057722.
A123971
Triangle T(n,k), read by rows, defined by T(n,k)=3*T(n-1,k)-T(n-1,k-1)-T(n-2,k), T(0,0)=1, T(1,0)=2, T(1,1)=-1, T(n,k)=0 if k<0 or if k>n.
Original entry on oeis.org
1, 2, -1, 5, -5, 1, 13, -19, 8, -1, 34, -65, 42, -11, 1, 89, -210, 183, -74, 14, -1, 233, -654, 717, -394, 115, -17, 1, 610, -1985, 2622, -1825, 725, -165, 20, -1, 1597, -5911, 9134, -7703, 3885, -1203, 224, -23, 1, 4181, -17345, 30691, -30418, 18633, -7329
Offset: 0
Triangle begins:
1
2, -1
5, -5, 1
13, -19, 8, -1
34, -65, 42, -11, 1
89, -210, 183, -74, 14, -1
233, -654, 717, -394, 115, -17, 1
Triangle (0, 2, 1/2, 1/2, 0, 0, ...) DELTA (1, -2, 0, 0, ...) begins:
1
0, 1
0, 2, -1
0, 5, -5, 1
0, 13, -19, 8, -1
0, 34, -65, 42, -11, 1
0, 89, -210, 183, -74, 14, -1
0, 233, -654, 717, -394, 115, -17, 1
Cf.
A094954,
A098495,
A123971,
A126124,
A152063,
A001519,
A079935,
A004253,
A001653,
A049685,
A070997,
A070998,
A072256,
A078922,
A077417,
A085260,
A001570,
A001870,
A126124.
-
Mathematica ( general k th center) Clear[M, T, d, a, x, k] k = 3 T[n_, m_, d_] := If[ n == m && n < d && m < d, k, If[n == m - 1 || n == m + 1, -1, If[n == m == d, k - 1, 0]]] M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}] Table[M[d], {d, 1, 10}] Table[Det[M[d]], {d, 1, 10}] Table[Det[M[d] - x*IdentityMatrix[d]], {d, 1, 10}] a = Join[{M[1]}, Table[CoefficientList[ Det[M[d] - x*IdentityMatrix[d]], x], {d, 1, 10}]] Flatten[a] MatrixForm[a] Table[NSolve[Det[M[d] - x*IdentityMatrix[d]] == 0, x], {d, 1, 10}] Table[x /. NSolve[Det[M[d] - x*IdentityMatrix[d]] == 0, x][[d]], {d, 1, 10}]
-
T(n,k)=polcoeff(polcoeff(Ser((1-x)/(1+(y-3)*x+x^2)),n,x),n-k,y) \\ Ralf Stephan, Dec 12 2013
-
@CachedFunction
def A123971(n,k): # With T(0,0) = 1!
if n< 0: return 0
if n==0: return 1 if k == 0 else 0
h = 2*A123971(n-1,k) if n==1 else 3*A123971(n-1,k)
return A123971(n-1,k-1) - A123971(n-2,k) - h
for n in (0..9): [A123971(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012
A121872
Triangle T(n, k) = (k*ChebyshevU(n, (k+2)/2) + 2*ChebyshevT(n+1, (k+2)/2))/2.
Original entry on oeis.org
5, 13, 41, 34, 153, 436, 89, 571, 2089, 5741, 233, 2131, 10009, 33461, 90481, 610, 7953, 47956, 195025, 620166, 1663585, 1597, 29681, 229771, 1136689, 4250681, 13097377, 34988311, 4181, 110771, 1100899, 6625109, 29134601, 103115431, 310957991, 828931049
Offset: 1
Triangle begins as:
5;
13, 41;
34, 153, 436;
89, 571, 2089, 5741;
233, 2131, 10009, 33461, 90481;
-
T:= func< n,k | ( k*Sinh((n+1)*Argcosh((k+2)/2))/Sinh(Argcosh((k+2)/2)) + 2*Cosh((n+1)*Argcosh((k+2)/2)) )/2 >;
[Round(T(n,k)): k in [1..n], n in [1..10]]; // G. C. Greubel, Oct 08 2019
-
seq(seq(simplify(( k*ChebyshevU(n, (k+2)/2) + 2*ChebyshevT(n+1, (k+2)/2) )/2), k=1..n), n=1..10); # G. C. Greubel, Oct 09 2019
-
f[k_]:= Sqrt[k*(k+4)]; T[n_, m_]:= T[n, m]= FullSimplify[((m+f[m])*(m+2 - f[m])^(n+2) - (m-f[m])*(m+2 + f[m])^(n+2))/(2^(n+3)*f[m])]; Table[T[n, m], {n,10}, {m,n}]//Flatten (* modified by G. C. Greubel, Oct 08 2019 *)
T[n_, k_]:= T[n, k]= (k*ChebyshevU[n, (k+2)/2] + 2*ChebyshevT[n+1, (k+ 2)/2])/2; Table[T[n, k], {n,10}, {k,n}]/Flatten (* G. C. Greubel, Oct 08 2019 *)
-
T(n,k)= ( k*sin((n+1)*acos((k+2)/2))/sin(acos((k+2)/2)) + 2*cos((n+1)*acos((k+2)/2)) )/2;
for(n=1,10, for(k=1,n, print1(round(T(n,k)), ", "))) \\ G. C. Greubel, Oct 08 2019
-
[[( k*chebyshev_U(n,(k+2)/2) + 2*chebyshev_T(n+1, (k+2)/2) )/2 for k in (1..n)] for n in (1..10)] # G. C. Greubel, Oct 08 2019
A218220
Array a(n,m) read by antidiagonals where a(0,m)=a(1,m)=1 and a(n,m) = m*a(n-1,m)-a(n-2,m) for n>=2.
Original entry on oeis.org
1, 1, 1, 1, 1, -1, 1, 1, 0, -1, 1, 1, 1, -1, 1, 1, 1, 2, 1, -1, 1, 1, 1, 3, 5, 1, 0, -1, 1, 1, 4, 11, 13, 1, 1, -1, 1, 1, 5, 19, 41, 34, 1, 1, 1, 1, 1, 6, 29, 91, 153, 89, 1, 0, 1, 1, 1, 7, 41, 169, 436, 571, 233, 1, -1, -1, 1, 1, 8, 55, 281, 985, 2089, 2131, 610, 1, -1, -1, 1, 1, 9, 71, 433, 1926, 5741, 10009, 7953, 1597, 1, 0, 1, 1, 1, 10, 89, 631, 3409, 13201, 33461, 47956, 29681
Offset: 0
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,...
-1, -1, 1, 5, 11, 19, 29, 41, 55, 71, 89,...
1, -1, 1, 13, 41, 91, 169, 281, 433, 631, 881,...
1, 0, 1, 34, 153, 436, 985,1926,3409,5608,8721,...
-1, 1, 1, 89, 571,2089,5741,13201,26839,49841,86329,...
-1, 1, 1, 233,2131,10009,33461,90481,211303,442961,854569,...
Comments