cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A078988 Chebyshev sequence with Diophantine property.

Original entry on oeis.org

1, 65, 4289, 283009, 18674305, 1232221121, 81307919681, 5365090477825, 354014663616769, 23359602708228929, 1541379764079492545, 101707704826538279041, 6711167138787446924161, 442835323455144958715585, 29220420180900779828304449, 1928104896615996323709378049
Offset: 0

Views

Author

Wolfdieter Lang, Jan 10 2003

Keywords

Comments

Bisection (even part) of A041025.
(4*A078989(n))^2 - 17*a(n)^2 = -1 (Pell -1 equation, see A077232-3).
Starting with a(1), hypotenuses of primitive Pythagorean triples in A195619 and A195620. - Clark Kimberling, Sep 22 2011

Examples

			(x,y) = (4,1), (268,65), (17684,4289), ... give the positive integer solutions to x^2 - 17*y^2 =-1.
		

Crossrefs

Row 66 of array A094954.
Cf. A097316 for S(n, 66).
Row 4 of array A188647.

Programs

  • GAP
    a:=[1,65];; for n in [3..20] do a[n]:=66*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Aug 01 2019
  • Magma
    I:=[1, 65]; [n le 2 select I[n] else 66*Self(n-1) - Self(n-2): n in [1..20]]; // G. C. Greubel, Aug 01 2019
    
  • Mathematica
    CoefficientList[Series[(1-x)/(1-66x+x^2), {x,0,20}], x] (* Michael De Vlieger, Apr 15 2019 *)
    LinearRecurrence[{66,-1}, {1,65}, 21] (* G. C. Greubel, Aug 01 2019 *)
  • PARI
    Vec((1-x)/(1-66*x+x^2) + O(x^20)) \\ Colin Barker, Jun 15 2015
    
  • Sage
    ((1-x)/(1-66*x+x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Aug 01 2019
    

Formula

G.f.: (1-x)/(1-66*x+x^2).
a(n) = T(2*n+1, sqrt(17))/sqrt(17) = ((-1)^n)*S(2*n, 8*i) = S(n, 66) - S(n-1, 66) with i^2=-1 and T(n, x), resp. S(n, x), Chebyshev's polynomials of the first, resp. second, kind. See A053120 and A049310.
a(n) = A041025(2*n).
a(n) = 66*a(n-1) - a(n-2) for n>1 ; a(0)=1, a(1)=65. - Philippe Deléham, Nov 18 2008

A098493 Triangle T(n,k) read by rows: difference between A098489 and A098490 at triangular rows.

Original entry on oeis.org

1, 0, -1, -1, -1, 1, -1, 1, 2, -1, 0, 3, 0, -3, 1, 1, 2, -5, -2, 4, -1, 1, -2, -7, 6, 5, -5, 1, 0, -5, 0, 15, -5, -9, 6, -1, -1, -3, 12, 9, -25, 1, 14, -7, 1, -1, 3, 15, -18, -29, 35, 7, -20, 8, -1, 0, 7, 0, -42, 14, 63, -42, -20, 27, -9, 1, 1, 4, -22, -24, 85, 14, -112, 42
Offset: 0

Views

Author

Ralf Stephan, Sep 12 2004

Keywords

Comments

Also, coefficients of polynomials that have values in A098495 and A094954.

Examples

			Triangle begins:
   1;
   0, -1;
  -1, -1, 1;
  -1,  1, 2, -1;
   0,  3, 0, -3, 1;
  ...
		

Crossrefs

Columns include A010892, -A076118. Diagonals include A033999, A038608, (-1)^n*A000096. Row sums are in A057077.
Cf. A098494 (diagonal polynomials), A085478, A244419.

Programs

  • Maple
    A098493 := proc (n, k)
    add((-1)^(k+binomial(n-j+1,2))*binomial(floor((1/2)*n+(1/2)*j),j)* binomial(j,k), j = k..n);
    end proc:
    seq(seq(A098493(n, k), k = 0..n), n = 0..10); # Peter Bala, Jul 13 2021
  • PARI
    T(n,k)=if(k>n||k<0||n<0,0,if(k>=n-1,(-1)^n*if(k==n,1,-k),if(n==1,0,if(k==0,T(n-1,0)-T(n-2,0),T(n-1,k)-T(n-2,k)-T(n-1,k-1)))))

Formula

T(n, k) = A098489[n(n+1)/2, k] - A098490[n(n+1)/2, k].
Recurrence: T(n, k) = T(n-1, k)-T(n-1, k-1)-T(n-2, k); T(n, k)=0 for n<0, k>n, k<0; T(n, n)=(-1)^n; T(n, n-1)=(-1)^n*(1-n).
G.f.: (1-x)/(1+(y-1)*x+x^2). [Vladeta Jovovic, Dec 14 2009]
From Peter Bala, Jul 13 2021: (Start)
Riordan array ( (1 - x)/(1 - x + x^2), -x/(1 - x + x^2) ).
T(n,k) = (-1)^k * the (n,k)-th entry of Q^(-1)*P = Sum_{j = k..n} (-1)^(k+binomial(n-j+1,2))*binomial(floor((1/2)*n+(1/2)*j),j)* binomial(j,k), where P denotes Pascal's triangle A007318 and Q denotes triangle A061554 (formed from P by sorting the rows into descending order). (End)
From Peter Bala, Jun 26 2025: (Start)
n-th row polynomial R(n, x) = Sum_{k = 0..n} (-1)^k * binomial(n+k, 2*k) * (1 + x)^k.
R(n, 2*x + 1) = (-1)^n * Dir(n, x), where Dir(n,x) denotes the n-th row polynomial of the triangle A244419.
R(n, -1 - x) = b(n, x), where b(n, x) denotes the n-th row polynomial of the triangle A085478. (End)

A162997 Array A(n,k) read by antidiagonals downward (n >= 0, k >= 1): the bottom-right element of the 2 X 2 matrix [1,n; 1,n+1] raised to k-th power.

Original entry on oeis.org

1, 1, 2, 1, 5, 3, 1, 13, 11, 4, 1, 34, 41, 19, 5, 1, 89, 153, 92, 29, 6, 1, 233, 571, 436, 169, 41, 7, 1, 610, 2131, 2089, 985, 281, 55, 8, 1, 1597, 7953, 10009, 5741, 1926, 433, 71, 9
Offset: 0

Views

Author

Gary W. Adamson, Jul 19 2009

Keywords

Comments

With k=0 column added, becomes A094954.
Also, A(n,k) is the top-left element of the same 2 X 2 matrix raised to (k+1)-th power.
Also, A(n,k) is the denominator of the rational number which has continued fraction expansion consisting of k repeats of [1, n]. Example: the row (3, 11, 41, ...) is extracted from denominators of the continued fractions [0; 1, 2], [0; 1, 2, 1, 2], ... = 2/3, 8/11, ...
Also, A(n,k)=Product_{i=1..k} (n+2+2*cos(2*Pi*i/(2*k+1))). This is somehow connected to the diagonal product formulas for (2*k+1)-gons found by Steinbach.
Row sums of the triangle = A162998: (1, 3, 9, 29, 100, 369, 1458, ...).

Examples

			The array begins:
1,...1,...1,....1,....1,.....1,.....1,...
2,...5,..13,...34,...89,...233....610,...
3,..11,..41,..153,..571,..2131,..........
4,..19,..91,..436,.2089,.................
5,..29,.169,..985,.......................
6,..41,.281,.............................
7,..55,..................................
8,.......................................
...
		

Crossrefs

Extensions

Spelling corrected by Jason G. Wurtzel, Aug 22 2010
Edited by Andrey Zabolotskiy, Sep 18 2017

A098495 Array T(r,c) read by antidiagonals: values of triangle A098493 interpreted as polynomials, r >= 0.

Original entry on oeis.org

1, 1, 0, 1, -1, -1, 1, -2, -1, -1, 1, -3, 1, 1, 0, 1, -4, 5, 1, 1, 1, 1, -5, 11, -7, -2, -1, 1, 1, -6, 19, -29, 9, 1, -1, 0, 1, -7, 29, -71, 76, -11, 1, 1, -1, 1, -8, 41, -139, 265, -199, 13, -2, 1, -1, 1, -9, 55, -239, 666, -989, 521, -15, 1, -1, 0, 1, -10, 71, -377, 1393, -3191, 3691, -1364, 17, 1, -1, 1, 1, -11, 89, -559
Offset: 0

Views

Author

Ralf Stephan, Sep 12 2004

Keywords

Examples

			Array begins
  1,  0, -1,  -1,   0,    1,    1,   0, -1, ...
  1, -1, -1,   1,   1,   -1,   -1,   1,  1, ...
  1, -2,  1,   1,  -2,    1,    1,  -2,  1, ...
  1, -3,  5,  -7,   9,  -11,   13, -15, ...
  1, -4, 11, -29,  76, -199,  521, ...
  1, -5, 19, -71, 265, -989, 3691, ...
  ...
		

Crossrefs

See A094954 (with negative k) for negative r and more formulas and programs.
Rows include (-1)^c times A005408, A002878, A001834, A030221, A002315. Columns include A028387. Antidiagonal sums are in A098496.

Programs

  • Mathematica
    T[r_, 1] := 1; T[r_, 2] := -r - 1; T[r_, c_] := -r*T[r, c - 1] - T[r, c - 2]; Flatten[ Table[ T[n - i, i], {n, 0, 11}, {i, n + 1}]] (* Robert G. Wilson v, May 10 2005 *)
  • PARI
    { t(r,c)=if(c>r||c<0||r<0,0,if(c>=r-1,(-1)^r*if(c==r,1,-c),if(r==1,0,if(c==0,t(r-1,0)-t(r-2,0),t(r-1,c)-t(r-2,c)-t(r-1,c-1))))) }
    T(r,c)=sum(i=0,c,t(c,i)*r^i);
    matrix(5,5,n,k,T(n-1,k-1))

Formula

Recurrence: T(r, 1) = 1, T(r, 2) = -r-1, T(r, c) = -rT(r, c-1) - T(r, c-2). (Corrected Oct 19 2004)

Extensions

More terms from Robert G. Wilson v, May 10 2005

A073134 Table by antidiagonals of T(n,k)=n*T(n,k-1)-T(n,k-2) starting with T(n,1)=1.

Original entry on oeis.org

1, 1, 1, 0, 2, 1, -1, 3, 3, 1, -1, 4, 8, 4, 1, 0, 5, 21, 15, 5, 1, 1, 6, 55, 56, 24, 6, 1, 1, 7, 144, 209, 115, 35, 7, 1, 0, 8, 377, 780, 551, 204, 48, 8, 1, -1, 9, 987, 2911, 2640, 1189, 329, 63, 9, 1, -1, 10, 2584, 10864, 12649, 6930, 2255, 496, 80, 10, 1, 0, 11, 6765, 40545, 60605, 40391, 15456, 3905, 711, 99, 11, 1, 1, 12
Offset: 1

Views

Author

Henry Bottomley, Jul 16 2002

Keywords

Examples

			Rows start:
  1, 1,  0, -1,  -1,   0,    1, ...;
  1, 2,  3,  4,   5,   6,    7, ...;
  1, 3,  8, 21,  55, 144,  377, ...;
  1, 4, 15, 56, 209, 780, 2911, ...;
  ...
		

Crossrefs

Rows include A010892, A000027, A001906, A001353, A004254, A001109, A004187, A001090, A018913, A004189, A004190. Columns include (with some gaps) A000012, A000027, A005563, A057722.
Cf. A094954.

Programs

Formula

T(n, k) = A073133(n, k)-2*A073135(n, k-2).
T(n, k) = Sum_{j=0..k-1} A049310(k-1, j)*n^j.

A123971 Triangle T(n,k), read by rows, defined by T(n,k)=3*T(n-1,k)-T(n-1,k-1)-T(n-2,k), T(0,0)=1, T(1,0)=2, T(1,1)=-1, T(n,k)=0 if k<0 or if k>n.

Original entry on oeis.org

1, 2, -1, 5, -5, 1, 13, -19, 8, -1, 34, -65, 42, -11, 1, 89, -210, 183, -74, 14, -1, 233, -654, 717, -394, 115, -17, 1, 610, -1985, 2622, -1825, 725, -165, 20, -1, 1597, -5911, 9134, -7703, 3885, -1203, 224, -23, 1, 4181, -17345, 30691, -30418, 18633, -7329
Offset: 0

Views

Author

Gary W. Adamson and Roger L. Bagula, Oct 30 2006

Keywords

Comments

This entry is the result of merging two sequences, this one and a later submission by Philippe Deléham, Nov 29 2013 (with edits from Ralf Stephan, Dec 12 2013). Most of the present version is the work of Philippe Deléham, the only things remaining from the original entry are the sequence data and the Mathematica program. - N. J. A. Sloane, May 31 2014
Subtriangle of the triangle given by (0, 2, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, -2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Apart from signs, equals A126124.
Row sums = 1.
Sum_{k=0..n} T(n,k)*(-x)^k = A001519(n+1), A079935(n+1), A004253(n+1), A001653(n+1), A049685(n), A070997(n), A070998(n), A072256(n+1), A078922(n+1), A077417(n), A085260(n+1), A001570(n+1) for x=0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 respectively.

Examples

			Triangle begins:
  1
  2, -1
  5, -5, 1
  13, -19, 8, -1
  34, -65, 42, -11, 1
  89, -210, 183, -74, 14, -1
  233, -654, 717, -394, 115, -17, 1
Triangle (0, 2, 1/2, 1/2, 0, 0, ...) DELTA (1, -2, 0, 0, ...) begins:
  1
  0, 1
  0, 2, -1
  0, 5, -5, 1
  0, 13, -19, 8, -1
  0, 34, -65, 42, -11, 1
  0, 89, -210, 183, -74, 14, -1
  0, 233, -654, 717, -394, 115, -17, 1
		

Crossrefs

Programs

  • Mathematica
    Mathematica ( general k th center) Clear[M, T, d, a, x, k] k = 3 T[n_, m_, d_] := If[ n == m && n < d && m < d, k, If[n == m - 1 || n == m + 1, -1, If[n == m == d, k - 1, 0]]] M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}] Table[M[d], {d, 1, 10}] Table[Det[M[d]], {d, 1, 10}] Table[Det[M[d] - x*IdentityMatrix[d]], {d, 1, 10}] a = Join[{M[1]}, Table[CoefficientList[ Det[M[d] - x*IdentityMatrix[d]], x], {d, 1, 10}]] Flatten[a] MatrixForm[a] Table[NSolve[Det[M[d] - x*IdentityMatrix[d]] == 0, x], {d, 1, 10}] Table[x /. NSolve[Det[M[d] - x*IdentityMatrix[d]] == 0, x][[d]], {d, 1, 10}]
  • PARI
    T(n,k)=polcoeff(polcoeff(Ser((1-x)/(1+(y-3)*x+x^2)),n,x),n-k,y) \\ Ralf Stephan, Dec 12 2013
    
  • Sage
    @CachedFunction
    def A123971(n,k): # With T(0,0) = 1!
        if n< 0: return 0
        if n==0: return 1 if k == 0 else 0
        h = 2*A123971(n-1,k) if n==1 else 3*A123971(n-1,k)
        return A123971(n-1,k-1) - A123971(n-2,k) - h
    for n in (0..9): [A123971(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012

Formula

T(n,k) = (-1)^n*A126124(n+1,k+1).
T(n,k) = (-1)^k*Sum_{m=k..n} binomial(m,k)*binomial(m+n,2*m). - Wadim Zudilin, Jan 11 2012
G.f.: (1-x)/(1+(y-3)*x+x^2).
T(n,0) = A001519(n+1) = A000045(2*n+1).
T(n+1,1) = -A001870(n).

Extensions

Edited by N. J. A. Sloane, May 31 2014

A121872 Triangle T(n, k) = (k*ChebyshevU(n, (k+2)/2) + 2*ChebyshevT(n+1, (k+2)/2))/2.

Original entry on oeis.org

5, 13, 41, 34, 153, 436, 89, 571, 2089, 5741, 233, 2131, 10009, 33461, 90481, 610, 7953, 47956, 195025, 620166, 1663585, 1597, 29681, 229771, 1136689, 4250681, 13097377, 34988311, 4181, 110771, 1100899, 6625109, 29134601, 103115431, 310957991, 828931049
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 09 2006

Keywords

Examples

			Triangle begins as:
    5;
   13,   41;
   34,  153,   436;
   89,  571,  2089,  5741;
  233, 2131, 10009, 33461, 90481;
		

Crossrefs

Programs

  • Magma
    T:= func< n,k | ( k*Sinh((n+1)*Argcosh((k+2)/2))/Sinh(Argcosh((k+2)/2)) + 2*Cosh((n+1)*Argcosh((k+2)/2)) )/2 >;
    [Round(T(n,k)): k in [1..n], n in [1..10]]; // G. C. Greubel, Oct 08 2019
    
  • Maple
    seq(seq(simplify(( k*ChebyshevU(n, (k+2)/2) + 2*ChebyshevT(n+1, (k+2)/2) )/2), k=1..n), n=1..10); # G. C. Greubel, Oct 09 2019
  • Mathematica
    f[k_]:= Sqrt[k*(k+4)]; T[n_, m_]:= T[n, m]= FullSimplify[((m+f[m])*(m+2 - f[m])^(n+2) - (m-f[m])*(m+2 + f[m])^(n+2))/(2^(n+3)*f[m])]; Table[T[n, m], {n,10}, {m,n}]//Flatten (* modified by G. C. Greubel, Oct 08 2019 *)
    T[n_, k_]:= T[n, k]= (k*ChebyshevU[n, (k+2)/2] + 2*ChebyshevT[n+1, (k+ 2)/2])/2; Table[T[n, k], {n,10}, {k,n}]/Flatten (* G. C. Greubel, Oct 08 2019 *)
  • PARI
    T(n,k)= ( k*sin((n+1)*acos((k+2)/2))/sin(acos((k+2)/2)) + 2*cos((n+1)*acos((k+2)/2)) )/2;
    for(n=1,10, for(k=1,n, print1(round(T(n,k)), ", "))) \\ G. C. Greubel, Oct 08 2019
    
  • Sage
    [[( k*chebyshev_U(n,(k+2)/2) + 2*chebyshev_T(n+1, (k+2)/2) )/2 for k in (1..n)] for n in (1..10)] # G. C. Greubel, Oct 08 2019

Formula

T(n, m) = ((m+f(m))*(m+2 - f(m))^(n+2) - (m-f(m))*(m+2 + f(m))^(n+2))/( 2^(n+3)*f(m)), where f(m) = sqrt(m*(m+4)).
From G. C. Greubel, Oct 08 2019: (Start)
T(n, k) = (k*ChebyshevU(n, (k+2)/2) + 2*ChebyshevT(n+1, (k+2)/2))/2;
T(n, k) = (k*Fibonacci(n+2, m+2, -1) + Lucas(n+2, m+2, -1))/2, where Fibonacci(n, x, y) and Lucas(n, x, y) are the bi-variate Fibonacci an Lucas polynomials, respectively. (End)

Extensions

Major edit and new name, G. C. Greubel, Oct 08 2019

A218220 Array a(n,m) read by antidiagonals where a(0,m)=a(1,m)=1 and a(n,m) = m*a(n-1,m)-a(n-2,m) for n>=2.

Original entry on oeis.org

1, 1, 1, 1, 1, -1, 1, 1, 0, -1, 1, 1, 1, -1, 1, 1, 1, 2, 1, -1, 1, 1, 1, 3, 5, 1, 0, -1, 1, 1, 4, 11, 13, 1, 1, -1, 1, 1, 5, 19, 41, 34, 1, 1, 1, 1, 1, 6, 29, 91, 153, 89, 1, 0, 1, 1, 1, 7, 41, 169, 436, 571, 233, 1, -1, -1, 1, 1, 8, 55, 281, 985, 2089, 2131, 610, 1, -1, -1, 1, 1, 9, 71, 433, 1926, 5741, 10009, 7953, 1597, 1, 0, 1, 1, 1, 10, 89, 631, 3409, 13201, 33461, 47956, 29681
Offset: 0

Views

Author

Nico Brown, Oct 23 2012

Keywords

Comments

Variant of A094954 and A162997.
a(n,0) alternates 1,1,-1,-1,1,1,...
a(n,1) alternates 1,1,0,-1,-1,0,...
a(n,2)=1
a(n,3) is alternating Fibonacci numbers.

Examples

			   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,...
   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,...
  -1,   0,   1,   2,   3,   4,   5,   6,   7,   8,   9,...
  -1,  -1,   1,   5,  11,  19,  29,  41,  55,  71,  89,...
   1,  -1,   1,  13,  41,  91, 169, 281, 433, 631, 881,...
   1,   0,   1,  34, 153, 436, 985,1926,3409,5608,8721,...
  -1,   1,   1,  89, 571,2089,5741,13201,26839,49841,86329,...
  -1,   1,   1, 233,2131,10009,33461,90481,211303,442961,854569,...
		

Crossrefs

Cf. A218219.
Previous Showing 21-28 of 28 results.