A162998 Row sums of triangle A162997.
1, 3, 9, 29, 100, 369, 1458, 6160, 27740
Offset: 0
Keywords
Examples
a(4) = 29 = (1 + 13 + 11 + 4) = sum of row 3 terms, triangle A162997
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(4) = 29 = (1 + 13 + 11 + 4) = sum of row 3 terms, triangle A162997
From _Ilya Gutkovskiy_, Apr 13 2016: (Start) Illustration of initial terms: o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o n=0 n=1 n=2 n=3 n=4 (End) From _Klaus Purath_, Mar 18 2019: (Start) Examples: a(0) = 1: 1^1-0*1 = 1, 0+1 = 1 (Fibonacci A000045). a(1) = 5: 3^2-1*4 = 5, 1+3 = 4 (Lucas A000032). a(2) = 11: 4^2-1*5 = 11, 1+4 = 5 (A000285); 5^2-2*7 = 11, 2+5 = 7 (A001060). a(3) = 19: 5^2-1*6 = 19, 1+5 = 6 (A022095); 7^2-3*10 = 19, 3+7 = 10 (A022120). a(4) = 29: 6^2-1*7 = 29, 1+6 = 7 (A022096); 9^2-4*13 = 29, 4+9 = 13 (A022130). a(11)/5 = 31: 7^2-2*9 = 31, 2+7 = 9 (A022113); 8^2-3*11 = 31, 3+8 = 11 (A022121). a(24)/11 = 59: 9^2-2*11 = 59, 2+9 = 11 (A022114); 12^2-5*17 = 59, 5+12 = 17 (A022137). (End)
a028387 n = n + (n + 1) ^ 2 -- Reinhard Zumkeller, Jul 17 2014
[n + (n+1)^2: n in [0..60]]; // Vincenzo Librandi, Apr 26 2011
FoldList[## + 2 &, 1, 2 Range@ 45] (* Robert G. Wilson v, Feb 02 2011 *) Table[n + (n + 1)^2, {n, 0, 100}] (* Vincenzo Librandi, Oct 17 2012 *) Table[ FrobeniusNumber[{n, n + 1}], {n, 2, 30}] (* Zak Seidov, Jan 14 2015 *)
a(n)=n^2+3*n+1 \\ Charles R Greathouse IV, Jun 10 2011
def a(n): return (n**2+3*n+1) # Torlach Rush, May 07 2024
[n+(n+1)^2 for n in range(0,48)] # Zerinvary Lajos, Jul 03 2008
I:=[1, -1, 1, 13]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 27 2012
with(linalg): M:=n->matrix(3,3,[n,-1,0,-1,n,-1,0,-1,n-1]): seq(det(M(n)),n=0..42);
CoefficientList[Series[(1-5*x+11*x^2-x^3)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jun 27 2012 *)
a(n)=n^3-n^2-2*n+1 \\ Charles R Greathouse IV, Jun 30 2011
a(5) = 5^4 + 3*5^3 - 3*5 = (625 + 375 - 15) = 985. a(4) = 436 = (1, 3, 3, 1) dot (1, 33, 86, 78) = (1 + 99 + 258 + 78) = 436. a(7) = 3409 = lower right term in M^4, M = {{1,6}{1,7}}. a(4) = 436 = (3 + a) * (3 + b) * (3 + c) * (3 + d), = (5.347296...) * (3.120614...) * (4) * (6.532088...) = 436.
[n^4 +3*n^3 -3*n: n in [1..45]]; // Vincenzo Librandi, Nov 25 2011
A192398:=n->n^4+3*n^3-3*n: seq(A192398(n), n=1..40); # Wesley Ivan Hurt, Sep 12 2014
LinearRecurrence[{5,-10,10,-5,1},{1,34,153,436,985},50] (* Vincenzo Librandi, Nov 25 2011 *) Table[n^4+3n^3-3n,{n,40}] (* Harvey P. Dale, Feb 21 2023 *)
a(n) = n^4 +3*n^3 -3*n \\ Charles R Greathouse IV, Jun 30 2011
[n*(n^3+3*n^2-3) for n in range(1,51)] # G. C. Greubel, Jul 11 2023
Triangle begins as: 5; 13, 41; 34, 153, 436; 89, 571, 2089, 5741; 233, 2131, 10009, 33461, 90481;
T:= func< n,k | ( k*Sinh((n+1)*Argcosh((k+2)/2))/Sinh(Argcosh((k+2)/2)) + 2*Cosh((n+1)*Argcosh((k+2)/2)) )/2 >; [Round(T(n,k)): k in [1..n], n in [1..10]]; // G. C. Greubel, Oct 08 2019
seq(seq(simplify(( k*ChebyshevU(n, (k+2)/2) + 2*ChebyshevT(n+1, (k+2)/2) )/2), k=1..n), n=1..10); # G. C. Greubel, Oct 09 2019
f[k_]:= Sqrt[k*(k+4)]; T[n_, m_]:= T[n, m]= FullSimplify[((m+f[m])*(m+2 - f[m])^(n+2) - (m-f[m])*(m+2 + f[m])^(n+2))/(2^(n+3)*f[m])]; Table[T[n, m], {n,10}, {m,n}]//Flatten (* modified by G. C. Greubel, Oct 08 2019 *) T[n_, k_]:= T[n, k]= (k*ChebyshevU[n, (k+2)/2] + 2*ChebyshevT[n+1, (k+ 2)/2])/2; Table[T[n, k], {n,10}, {k,n}]/Flatten (* G. C. Greubel, Oct 08 2019 *)
T(n,k)= ( k*sin((n+1)*acos((k+2)/2))/sin(acos((k+2)/2)) + 2*cos((n+1)*acos((k+2)/2)) )/2; for(n=1,10, for(k=1,n, print1(round(T(n,k)), ", "))) \\ G. C. Greubel, Oct 08 2019
[[( k*chebyshev_U(n,(k+2)/2) + 2*chebyshev_T(n+1, (k+2)/2) )/2 for k in (1..n)] for n in (1..10)] # G. C. Greubel, Oct 08 2019
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,... 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,... -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,... -1, -1, 1, 5, 11, 19, 29, 41, 55, 71, 89,... 1, -1, 1, 13, 41, 91, 169, 281, 433, 631, 881,... 1, 0, 1, 34, 153, 436, 985,1926,3409,5608,8721,... -1, 1, 1, 89, 571,2089,5741,13201,26839,49841,86329,... -1, 1, 1, 233,2131,10009,33461,90481,211303,442961,854569,...
Comments