cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A162998 Row sums of triangle A162997.

Original entry on oeis.org

1, 3, 9, 29, 100, 369, 1458, 6160, 27740
Offset: 0

Views

Author

Gary W. Adamson, Jul 23 2009

Keywords

Examples

			a(4) = 29 = (1 + 13 + 11 + 4) = sum of row 3 terms, triangle A162997
		

Crossrefs

A028387 a(n) = n + (n+1)^2.

Original entry on oeis.org

1, 5, 11, 19, 29, 41, 55, 71, 89, 109, 131, 155, 181, 209, 239, 271, 305, 341, 379, 419, 461, 505, 551, 599, 649, 701, 755, 811, 869, 929, 991, 1055, 1121, 1189, 1259, 1331, 1405, 1481, 1559, 1639, 1721, 1805, 1891, 1979, 2069, 2161, 2255, 2351, 2449, 2549, 2651
Offset: 0

Views

Author

Keywords

Comments

a(n+1) is the least k > a(n) + 1 such that A000217(a(n)) + A000217(k) is a square. - David Wasserman, Jun 30 2005
Values of Fibonacci polynomial n^2 - n - 1 for n = 2, 3, 4, 5, ... - Artur Jasinski, Nov 19 2006
A127701 * [1, 2, 3, ...]. - Gary W. Adamson, Jan 24 2007
Row sums of triangle A135223. - Gary W. Adamson, Nov 23 2007
Equals row sums of triangle A143596. - Gary W. Adamson, Aug 26 2008
a(n-1) gives the number of n X k rectangles on an n X n chessboard (for k = 1, 2, 3, ..., n). - Aaron Dunigan AtLee, Feb 13 2009
sqrt(a(0) + sqrt(a(1) + sqrt(a(2) + sqrt(a(3) + ...)))) = sqrt(1 + sqrt(5 + sqrt(11 + sqrt(19 + ...)))) = 2. - Miklos Kristof, Dec 24 2009
When n + 1 is prime, a(n) gives the number of irreducible representations of any nonabelian group of order (n+1)^3. - Andrew Rupinski, Mar 17 2010
a(n) = A176271(n+1, n+1). - Reinhard Zumkeller, Apr 13 2010
The product of any 4 consecutive integers plus 1 is a square (see A062938); the terms of this sequence are the square roots. - Harvey P. Dale, Oct 19 2011
Or numbers not expressed in the form m + floor(sqrt(m)) with integer m. - Vladimir Shevelev, Apr 09 2012
Left edge of the triangle in A214604: a(n) = A214604(n+1,1). - Reinhard Zumkeller, Jul 25 2012
Another expression involving phi = (1 + sqrt(5))/2 is a(n) = (n + phi)(n + 1 - phi). Therefore the numbers in this sequence, even if they are prime in Z, are not prime in Z[phi]. - Alonso del Arte, Aug 03 2013
a(n-1) = n*(n+1) - 1, n>=0, with a(-1) = -1, gives the values for a*c of indefinite binary quadratic forms [a, b, c] of discriminant D = 5 for b = 2*n+1. In general D = b^2 - 4ac > 0 and the form [a, b, c] is a*x^2 + b*x*y + c*y^2. - Wolfdieter Lang, Aug 15 2013
a(n) has prime factors given by A038872. - Richard R. Forberg, Dec 10 2014
A253607(a(n)) = -1. - Reinhard Zumkeller, Jan 05 2015
An example of a quadratic sequence for which the continued square root map (see A257574) produces the number 2. There are infinitely many sequences with this property - another example is A028387. See Popular Computing link. - N. J. A. Sloane, May 03 2015
Left edge of the triangle in A260910: a(n) = A260910(n+2,1). - Reinhard Zumkeller, Aug 04 2015
Numbers m such that 4m+5 is a square. - Bruce J. Nicholson, Jul 19 2017
The numbers represented as 131 in base n: 131_4 = 29, 131_5 = 41, ... . If 'digits' larger than the base are allowed then 131_2 = 11 and 131_1 = 5 also. - Ron Knott, Nov 14 2017
From Klaus Purath, Mar 18 2019: (Start)
Let m be a(n) or a prime factor of a(n). Then, except for 1 and 5, there are, if m is a prime, exactly two squares y^2 such that the difference y^2 - m contains exactly one pair of factors {x,z} such that the following applies: x*z = y^2 - m, x + y = z with
x < y, where {x,y,z} are relatively prime numbers. {x,y,z} are the initial values of a sequence of the Fibonacci type. Thus each a(n) > 5, if it is a prime, and each prime factor p > 5 of an a(n) can be assigned to exactly two sequences of the Fibonacci type. a(0) = 1 belongs to the original Fibonacci sequence and a(1) = 5 to the Lucas sequence.
But also the reverse assignment applies. From any sequence (f(i)) of the Fibonacci type we get from its 3 initial values by f(i)^2 - f(i-1)*f(i+1) with f(i-1) < f(i) a term a(n) or a prime factor p of a(n). This relation is also valid for any i. In this case we get the absolute value |a(n)| or |p|. (End)
a(n-1) = 2*T(n) - 1, for n>=1, with T = A000217, is a proper subsequence of A089270, and the terms are 0,-1,+1 (mod 5). - Wolfdieter Lang, Jul 05 2019
a(n+1) is the number of wedged n-dimensional spheres in the homotopy of the neighborhood complex of Kneser graph KG_{2,n}. Here, KG_{2,n} is a graph whose vertex set is the collection of subsets of cardinality 2 of set {1,2,...,n+3,n+4} and two vertices are adjacent if and only if they are disjoint. - Anurag Singh, Mar 22 2021
Also the number of squares between (n+2)^2 and (n+2)^4. - Karl-Heinz Hofmann, Dec 07 2021
(x, y, z) = (A001105(n+1), -a(n-1), -a(n)) are solutions of the Diophantine equation x^3 + 4*y^3 + 4*z^3 = 8. - XU Pingya, Apr 25 2022
The least significant digit of terms of this sequence cycles through 1, 5, 1, 9, 9. - Torlach Rush, Jun 05 2024

Examples

			From _Ilya Gutkovskiy_, Apr 13 2016: (Start)
Illustration of initial terms:
                                        o               o
                        o           o   o o           o o
            o       o   o o       o o   o o o       o o o
    o   o   o o   o o   o o o   o o o   o o o o   o o o o
o   o o o   o o o o o   o o o o o o o   o o o o o o o o o
n=0  n=1       n=2           n=3               n=4
(End)
From _Klaus Purath_, Mar 18 2019: (Start)
Examples:
a(0) = 1: 1^1-0*1 = 1, 0+1 = 1 (Fibonacci A000045).
a(1) = 5: 3^2-1*4 = 5, 1+3 = 4 (Lucas A000032).
a(2) = 11: 4^2-1*5 = 11, 1+4 = 5 (A000285); 5^2-2*7 = 11, 2+5 = 7 (A001060).
a(3) = 19: 5^2-1*6 = 19, 1+5 = 6 (A022095); 7^2-3*10 = 19, 3+7 = 10 (A022120).
a(4) = 29: 6^2-1*7 = 29, 1+6 = 7 (A022096); 9^2-4*13 = 29, 4+9 = 13 (A022130).
a(11)/5 = 31: 7^2-2*9 = 31, 2+7 = 9 (A022113); 8^2-3*11 = 31, 3+8 = 11 (A022121).
a(24)/11 = 59: 9^2-2*11 = 59, 2+9 = 11 (A022114); 12^2-5*17 = 59, 5+12 = 17 (A022137).
(End)
		

Crossrefs

Complement of A028392. Third column of array A094954.
Cf. A000217, A002522, A062392, A062786, A127701, A135223, A143596, A052905, A162997, A062938 (squares of this sequence).
A110331 and A165900 are signed versions.
Cf. A002327 (primes), A094210.
Frobenius number for k successive numbers: this sequence (k=2), A079326 (k=3), A138984 (k=4), A138985 (k=5), A138986 (k=6), A138987 (k=7), A138988 (k=8).

Programs

Formula

a(n) = sqrt(A062938(n)). - Floor van Lamoen, Oct 08 2001
a(0) = 1, a(1) = 5, a(n) = (n+1)*a(n-1) - (n+2)*a(n-2) for n > 1. - Gerald McGarvey, Sep 24 2004
a(n) = A105728(n+2, n+1). - Reinhard Zumkeller, Apr 18 2005
a(n) = A109128(n+2, 2). - Reinhard Zumkeller, Jun 20 2005
a(n) = 2*T(n+1) - 1, where T(n) = A000217(n). - Gary W. Adamson, Aug 15 2007
a(n) = A005408(n) + A002378(n); A084990(n+1) = Sum_{k=0..n} a(k). - Reinhard Zumkeller, Aug 20 2007
Binomial transform of [1, 4, 2, 0, 0, 0, ...] = (1, 5, 11, 19, ...). - Gary W. Adamson, Sep 20 2007
G.f.: (1+2*x-x^2)/(1-x)^3. a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - R. J. Mathar, Jul 11 2009
a(n) = (n + 2 + 1/phi) * (n + 2 - phi); where phi = 1.618033989... Example: a(3) = 19 = (5 + .6180339...) * (3.381966...). Cf. next to leftmost column in A162997 array. - Gary W. Adamson, Jul 23 2009
a(n) = a(n-1) + 2*(n+1), with n > 0, a(0) = 1. - Vincenzo Librandi, Nov 18 2010
For k < n, a(n) = (k+1)*a(n-k) - k*a(n-k-1) + k*(k+1); e.g., a(5) = 41 = 4*11 - 3*5 + 3*4. - Charlie Marion, Jan 13 2011
a(n) = lower right term in M^2, M = the 2 X 2 matrix [1, n; 1, (n+1)]. - Gary W. Adamson, Jun 29 2011
G.f.: (x^2-2*x-1)/(x-1)^3 = G(0) where G(k) = 1 + x*(k+1)*(k+4)/(1 - 1/(1 + (k+1)*(k+4)/G(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Oct 16 2012
Sum_{n>0} 1/a(n) = 1 + Pi*tan(sqrt(5)*Pi/2)/sqrt(5). - Enrique Pérez Herrero, Oct 11 2013
E.g.f.: exp(x) (1+4*x+x^2). - Tom Copeland, Dec 02 2013
a(n) = A005408(A000217(n)). - Tony Foster III, May 31 2016
From Amiram Eldar, Jan 29 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = -Pi*sec(sqrt(5)*Pi/2).
Product_{n>=1} (1 - 1/a(n)) = -Pi*sec(sqrt(5)*Pi/2)/6. (End)
a(5*n+1)/5 = A062786(n+1). - Torlach Rush, Jun 05 2024

Extensions

Minor edits by N. J. A. Sloane, Jul 04 2010, following suggestions from the Sequence Fans Mailing List

A123972 a(n) = n^3 - n^2 - 2*n + 1.

Original entry on oeis.org

1, -1, 1, 13, 41, 91, 169, 281, 433, 631, 881, 1189, 1561, 2003, 2521, 3121, 3809, 4591, 5473, 6461, 7561, 8779, 10121, 11593, 13201, 14951, 16849, 18901, 21113, 23491, 26041, 28769, 31681, 34783, 38081, 41581, 45289, 49211, 53353, 57721, 62321, 67159, 72241
Offset: 0

Views

Author

Gary W. Adamson and Roger L. Bagula, Oct 30 2006

Keywords

Comments

a(n) is the determinant of the 3 X 3 matrix {{n,-1,0 },{-1,n,-1},{0,-1,n-1}}.

Crossrefs

Cf. A162997.

Programs

  • Magma
    I:=[1, -1, 1, 13]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 27 2012
  • Maple
    with(linalg): M:=n->matrix(3,3,[n,-1,0,-1,n,-1,0,-1,n-1]): seq(det(M(n)),n=0..42);
  • Mathematica
    CoefficientList[Series[(1-5*x+11*x^2-x^3)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Jun 27 2012 *)
  • PARI
    a(n)=n^3-n^2-2*n+1 \\ Charles R Greathouse IV, Jun 30 2011
    

Formula

a(n) = (n + 2*cos(2*Pi/7)) * (n + 2*cos(4*Pi/7)) * (n + 2*cos(6*Pi/7)). Cf. 3rd column from the left in the array of A162997. - Gary W. Adamson, Jul 23 2009
a(n) equals the lower right term in M^3, M is the 2 X 2 matrix {{1, n-2}, {1, n-1}}. - Gary W. Adamson, Jun 29 2011
Starting (1, 13, 41, ...) = the binomial transform of (1, 12, 16, 6). - Gary W. Adamson, Jun 29 2011
G.f.: (1 - 5*x + 11*x^2 - x^3)/(1-x)^4. - Colin Barker, Jan 29 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 27 2012

Extensions

Edited by N. J. A. Sloane, Nov 01 2006 and Nov 24 2006

A192398 a(n) = n^4 + 3*n^3 - 3*n.

Original entry on oeis.org

1, 34, 153, 436, 985, 1926, 3409, 5608, 8721, 12970, 18601, 25884, 35113, 46606, 60705, 77776, 98209, 122418, 150841, 183940, 222201, 266134, 316273, 373176, 437425, 509626, 590409, 680428, 780361, 890910, 1012801, 1146784, 1293633, 1454146, 1629145, 1819476
Offset: 1

Views

Author

Gary W. Adamson, Jun 30 2011

Keywords

Comments

Related to the 9-gon (nonagon). Following Steinbach's strategy re: "Diagonal Product Formulas" and applied to the 9-gon (nonagon), we extract the constants (a, b, c, d) as e-vals of the 4 X 4 tridiagaonal matrix with (1's in the super and subdiagonals), (1,2,2,2), and the rest zeros. The charpoly of this matrix is row 4 of A054142, a Morgan-Voyce polynomial: x^4 - 7*x^3 + 15*x^2 + 10*x - 1 = 0. Following Steinbach's procedure, let the matrix = M; then find the first four rows of M^n * [1,0,0,0,...] getting (1; 1,1; 2,3,1; 5,9,5,1). Using the SIMULT operation, we equate each of these rows to successive powers of the constant c (largest e-val of matrix M), 3.5320888...as follows: SIMULT: [1,0,0,0] = 1; [1,1,0,0] = c; [2,3,1,0] = c^2; [5,9,5,1] = c^3. Solving, we obtain the four distinct diagonals of the 9-gon (nonagon) with edge = 1: (1, 2.5320888,..., 2.879385,..., and 1.879385,...).
The sequence is column 3 in the array of A162997.
Analogous sequences using the matrix M^k generator -M^2 generates A028387: (1, 5, 11, 19, 29, 41,...); M^3 generates A123972: (1, 13, 41, 91, 169,...).

Examples

			a(5) = 5^4 + 3*5^3 - 3*5 = (625 + 375 - 15) = 985.
a(4) = 436 = (1, 3, 3, 1) dot (1, 33, 86, 78) = (1 + 99 + 258 + 78) = 436.
a(7) = 3409 = lower right term in M^4, M = {{1,6}{1,7}}.
a(4) = 436 = (3 + a) * (3 + b) * (3 + c) * (3 + d), = (5.347296...) * (3.120614...) * (4) * (6.532088...) = 436.
		

Crossrefs

Programs

Formula

G.f.: (1 +29*x -7*x^2 +x^3) / (1-x)^5. - R. J. Mathar, Jul 08 2011
a(n) = binomial transform of [1, 33, 86, 78, 24, 0, 0, 0,...].
a(n) = lower right term in the 2 X 2 matrix M^4, M = {{1,n-1}, {1,n}}.
a(n) = ((n-1) + a) * ((n-1) + b) * ((n-1) + c) * ((n-1) + d), where a, b, c, d, = {k=1,2,3,4} 4*cos^2 (2*Pi*k)/9.
E.g.f.: x*(1 + 16*x + 9*x^2 + x^3)*exp(x). - G. C. Greubel, Jul 11 2023

A121872 Triangle T(n, k) = (k*ChebyshevU(n, (k+2)/2) + 2*ChebyshevT(n+1, (k+2)/2))/2.

Original entry on oeis.org

5, 13, 41, 34, 153, 436, 89, 571, 2089, 5741, 233, 2131, 10009, 33461, 90481, 610, 7953, 47956, 195025, 620166, 1663585, 1597, 29681, 229771, 1136689, 4250681, 13097377, 34988311, 4181, 110771, 1100899, 6625109, 29134601, 103115431, 310957991, 828931049
Offset: 1

Views

Author

Roger L. Bagula and Gary W. Adamson, Sep 09 2006

Keywords

Examples

			Triangle begins as:
    5;
   13,   41;
   34,  153,   436;
   89,  571,  2089,  5741;
  233, 2131, 10009, 33461, 90481;
		

Crossrefs

Programs

  • Magma
    T:= func< n,k | ( k*Sinh((n+1)*Argcosh((k+2)/2))/Sinh(Argcosh((k+2)/2)) + 2*Cosh((n+1)*Argcosh((k+2)/2)) )/2 >;
    [Round(T(n,k)): k in [1..n], n in [1..10]]; // G. C. Greubel, Oct 08 2019
    
  • Maple
    seq(seq(simplify(( k*ChebyshevU(n, (k+2)/2) + 2*ChebyshevT(n+1, (k+2)/2) )/2), k=1..n), n=1..10); # G. C. Greubel, Oct 09 2019
  • Mathematica
    f[k_]:= Sqrt[k*(k+4)]; T[n_, m_]:= T[n, m]= FullSimplify[((m+f[m])*(m+2 - f[m])^(n+2) - (m-f[m])*(m+2 + f[m])^(n+2))/(2^(n+3)*f[m])]; Table[T[n, m], {n,10}, {m,n}]//Flatten (* modified by G. C. Greubel, Oct 08 2019 *)
    T[n_, k_]:= T[n, k]= (k*ChebyshevU[n, (k+2)/2] + 2*ChebyshevT[n+1, (k+ 2)/2])/2; Table[T[n, k], {n,10}, {k,n}]/Flatten (* G. C. Greubel, Oct 08 2019 *)
  • PARI
    T(n,k)= ( k*sin((n+1)*acos((k+2)/2))/sin(acos((k+2)/2)) + 2*cos((n+1)*acos((k+2)/2)) )/2;
    for(n=1,10, for(k=1,n, print1(round(T(n,k)), ", "))) \\ G. C. Greubel, Oct 08 2019
    
  • Sage
    [[( k*chebyshev_U(n,(k+2)/2) + 2*chebyshev_T(n+1, (k+2)/2) )/2 for k in (1..n)] for n in (1..10)] # G. C. Greubel, Oct 08 2019

Formula

T(n, m) = ((m+f(m))*(m+2 - f(m))^(n+2) - (m-f(m))*(m+2 + f(m))^(n+2))/( 2^(n+3)*f(m)), where f(m) = sqrt(m*(m+4)).
From G. C. Greubel, Oct 08 2019: (Start)
T(n, k) = (k*ChebyshevU(n, (k+2)/2) + 2*ChebyshevT(n+1, (k+2)/2))/2;
T(n, k) = (k*Fibonacci(n+2, m+2, -1) + Lucas(n+2, m+2, -1))/2, where Fibonacci(n, x, y) and Lucas(n, x, y) are the bi-variate Fibonacci an Lucas polynomials, respectively. (End)

Extensions

Major edit and new name, G. C. Greubel, Oct 08 2019

A218220 Array a(n,m) read by antidiagonals where a(0,m)=a(1,m)=1 and a(n,m) = m*a(n-1,m)-a(n-2,m) for n>=2.

Original entry on oeis.org

1, 1, 1, 1, 1, -1, 1, 1, 0, -1, 1, 1, 1, -1, 1, 1, 1, 2, 1, -1, 1, 1, 1, 3, 5, 1, 0, -1, 1, 1, 4, 11, 13, 1, 1, -1, 1, 1, 5, 19, 41, 34, 1, 1, 1, 1, 1, 6, 29, 91, 153, 89, 1, 0, 1, 1, 1, 7, 41, 169, 436, 571, 233, 1, -1, -1, 1, 1, 8, 55, 281, 985, 2089, 2131, 610, 1, -1, -1, 1, 1, 9, 71, 433, 1926, 5741, 10009, 7953, 1597, 1, 0, 1, 1, 1, 10, 89, 631, 3409, 13201, 33461, 47956, 29681
Offset: 0

Views

Author

Nico Brown, Oct 23 2012

Keywords

Comments

Variant of A094954 and A162997.
a(n,0) alternates 1,1,-1,-1,1,1,...
a(n,1) alternates 1,1,0,-1,-1,0,...
a(n,2)=1
a(n,3) is alternating Fibonacci numbers.

Examples

			   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,...
   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,   1,...
  -1,   0,   1,   2,   3,   4,   5,   6,   7,   8,   9,...
  -1,  -1,   1,   5,  11,  19,  29,  41,  55,  71,  89,...
   1,  -1,   1,  13,  41,  91, 169, 281, 433, 631, 881,...
   1,   0,   1,  34, 153, 436, 985,1926,3409,5608,8721,...
  -1,   1,   1,  89, 571,2089,5741,13201,26839,49841,86329,...
  -1,   1,   1, 233,2131,10009,33461,90481,211303,442961,854569,...
		

Crossrefs

Cf. A218219.
Showing 1-6 of 6 results.