cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A029749 Numbers of the form 2^k times 1, 5 or 7.

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 10, 14, 16, 20, 28, 32, 40, 56, 64, 80, 112, 128, 160, 224, 256, 320, 448, 512, 640, 896, 1024, 1280, 1792, 2048, 2560, 3584, 4096, 5120, 7168, 8192, 10240, 14336, 16384, 20480, 28672, 32768, 40960, 57344, 65536, 81920, 114688, 131072
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(3 x^4 + 3 x^3 + 4 x^2 + 2 x + 1) / (2 x^3 - 1), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 20 2013 *)

Formula

From Colin Barker, Jul 19 2013: (Start)
a(n) = 2*a(n-3) for n>4.
G.f.: -(3*x^4 + 3*x^3 + 4*x^2 + 2*x + 1) / (2*x^3 - 1). (End)
Sum_{n>=0} 1/a(n) = 94/35. - Amiram Eldar, Jan 21 2022

Extensions

More terms from Colin Barker, Jul 19 2013

A121451 Maximum product over partitions into parts of the form 3k+2.

Original entry on oeis.org

0, 2, 0, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 128, 160, 256, 320, 512, 640, 1024, 1280, 2048, 2560, 4096, 5120, 8192, 10240, 16384, 20480, 32768, 40960, 65536, 81920, 131072, 163840, 262144, 327680, 524288, 655360, 1048576
Offset: 1

Views

Author

John W. Layman, Apr 26 2007

Keywords

Comments

With the exception of the first three terms of this sequence and the first two terms of A094958, these two sequences appear to be identical.

Examples

			The only partition of 7 into parts of the form 3k+2 is {5,2}, so the maximum product is a(7)=10.
		

Crossrefs

Formula

Conjecture. a(1)=a(3)=0, otherwise a(n)=2^(n/2) if n is even and a(n)=5*2^((n-5)/2) if n is odd. (This has been verified for up to n=40.)

A128939 Maximal product over partitions of n into parts of the form 3k+1.

Original entry on oeis.org

1, 1, 1, 4, 4, 4, 7, 16, 16, 16, 28, 64, 64, 64, 112, 256, 256, 256, 448, 1024, 1024, 1024, 1792, 4096, 4096, 4096, 7168, 16384, 16384, 16384, 28672, 65536, 65536, 65536, 114688, 262144, 262144, 262144, 458752, 1048576
Offset: 1

Views

Author

John W. Layman, Apr 27 2007

Keywords

Crossrefs

Formula

Conjecture. a(n)=1 if n<4, else a(n)=4^[n/4] if n<>4m+3, else a(n)=7*4^([n/4]-1), where [...] denotes the Floor function. (This has been verified up to n=40.)

A228305 a(1) = 3; for n >= 1, a(2*n) = 2^(n+1), a(2*n+1) = 5*2^(n-1).

Original entry on oeis.org

3, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 128, 160, 256, 320, 512, 640, 1024, 1280, 2048, 2560, 4096, 5120, 8192, 10240, 16384, 20480, 32768, 40960, 65536, 81920, 131072, 163840, 262144, 327680, 524288, 655360, 1048576, 1310720, 2097152, 2621440, 4194304, 5242880
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 20 2013

Keywords

Comments

Union of A020714 and A198633.
Essentially the same as A094958.
For every n, a(1)^3 + a(2)^3 + a(3)^3 + ... + a(2*n-1)^3 is a cube.

Examples

			a(9) = 40 because it is equal to 5*2^(4-1).
		

Crossrefs

Programs

  • Magma
    [n le 3 select n+2 else 2*Self(n-2) : n in [1..43]];
    
  • Mathematica
    CoefficientList[Series[(3 + 4 x - x^2)/(1 - 2 x^2), {x, 0, 50}], x] (* Bruno Berselli, Aug 20 2013 *)
  • PARI
    r=43; print1(3); print1(", "); for(n=2, r, if(bitand(n, 1), print1(5*2^((n-3)/2)), print1(2^(n/2+1))); print1(", "));

Formula

a(n) = ceiling((9 - (- 1)^n)*2^(floor(n/2) - 2)).
a(n) = n + 2 for n <= 3; a(n) = 2*a(n-2) for n > 3.
From Bruno Berselli, Aug 20 2013: (Start)
G.f.: x*(3+4*x-x^2)/(1-2*x^2).
a(n) = (16-(8-5*r)*(1-(-1)^n))*r^(n-6) for n>1, r=sqrt(2). (End)
E.g.f.: (8*cosh(sqrt(2)*x) + 5*sqrt(2)*sinh(sqrt(2)*x) + 2*x - 8)/4. - Stefano Spezia, Apr 09 2025

A356050 a(n) = 2*A135318(n+1) - A135318(n).

Original entry on oeis.org

1, 1, 3, 4, 5, 6, 11, 14, 21, 26, 43, 54, 85, 106, 171, 214, 341, 426, 683, 854, 1365, 1706, 2731, 3414, 5461, 6826, 10923, 13654, 21845, 27306, 43691, 54614, 87381, 109226, 174763, 218454, 349525, 436906, 699051, 873814, 1398101, 1747626, 2796203, 3495254, 5592405
Offset: 0

Views

Author

Paul Curtz, Aug 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 1, 0, 2}, {1, 1, 3, 4}, 50] (* Amiram Eldar, Aug 19 2022 *)

Formula

a(n) = A135318(n) + A230096(n+1).
a(n) = a(n-8) + 5*A094958(n-5).
a(2*n) = A001045(n+2).
a(2*n+1) = A084214(n+1).
From Stefano Spezia, Aug 20 2022: (Start)
O.g.f.: (1 + x + 2*x^2 + 3*x^3)/((1 + x^2)*(1 - 2*x^2)).
E.g.f.: (8*cosh(sqrt(2)*x) - 2*cos(x) + 5*sqrt(2)*sinh(sqrt(2)*x) - 4*sin(x))/6. (End)
3*a(n) = A228826(n+1) +A094958(n+3). - R. J. Mathar, Jan 25 2023
Previous Showing 11-15 of 15 results.