cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 143 results. Next

A095019 Number of zero-bit dominant primes (A095071) in range ]2^n,2^(n+1)].

Original entry on oeis.org

0, 0, 0, 1, 0, 3, 3, 11, 10, 40, 52, 130, 154, 482, 649, 1756, 2483, 6479, 9640, 24022, 34812, 89306, 136739, 335115, 510833, 1265350, 1982321, 4781514, 7508064, 18079040, 28833595, 68709969, 110272081, 262002130, 425542739, 1000343760, 1632745091, 3828253857, 6305334325, 14683465908
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2004

Keywords

Crossrefs

Extensions

a(34)-a(40) from Amiram Eldar, Jun 13 2024

A095020 Number of one-bit dominant primes (A095070) in range ]2^n,2^(n+1)].

Original entry on oeis.org

1, 2, 2, 4, 5, 10, 16, 32, 48, 97, 175, 334, 529, 1130, 1850, 3953, 6276, 13911, 23248, 49564, 81622, 178910, 300311, 650703, 1091809, 2380394, 4062176, 8780393, 15021634, 32618497, 56134342, 121625616, 209889612, 455265038, 791458830, 1711760073, 2982211935, 6457387921, 11302458576, 24430016732
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2004

Keywords

Crossrefs

Extensions

a(34)-a(40) from Amiram Eldar, Jun 13 2024

A095052 Number of primes with number of 0-bits equal to one plus number of 1-bits (A095072) in range ]2^2n,2^(2n+1)].

Original entry on oeis.org

0, 1, 3, 10, 25, 78, 283, 906, 3044, 10920, 37920, 135182, 487555, 1764216, 6415902, 23585285, 86789112, 320972293, 1192327462, 4441973622
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2004

Keywords

Examples

			In the range ]2^4,2^5] 17 (10001 in binary) is the only such prime thus a(2) = 1.
		

Crossrefs

Extensions

a(17)-a(20) from Amiram Eldar, Jun 13 2024

A095053 Number of primes with number of 1-bits equal to one plus number 0-bits (A095073) in range ]2^2n,2^(2n+1)].

Original entry on oeis.org

1, 1, 5, 11, 28, 105, 362, 1093, 3659, 13001, 45171, 159510, 563833, 2008295, 7333827, 26730538, 97256891, 358079458, 1324674524, 4902380577
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2004

Keywords

Examples

			In the range ]2^2,2^3] 5 (101 in binary) is the only such prime thus a(1) = 1.
Similarly, in the range ]2^4,2^5] 19 (10011 in binary) is also unique in that respect, thus a(2) = 1 as well.
		

Crossrefs

Extensions

a(17)-a(20) from Amiram Eldar, Jun 13 2024

A095057 Number of primes with four 1-bits (A095077) in range ]2^n,2^(n+1)].

Original entry on oeis.org

0, 0, 0, 2, 2, 5, 4, 10, 6, 13, 11, 9, 16, 16, 18, 25, 15, 19, 15, 37, 17, 37, 29, 29, 32, 40, 23, 49, 31, 51, 39, 37, 30, 52, 46, 40, 42, 62, 43, 57, 42, 68, 52, 78, 60, 89, 54, 63, 59, 92, 58, 79, 82, 99, 73, 87, 47, 99, 74, 72, 81, 106, 56, 102, 85, 117, 85, 97, 64, 132, 93
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2004

Keywords

Crossrefs

Extensions

More terms from T. D. Noe, Oct 17 2007

A095065 Number of fib000 primes (A095085) in range ]2^n,2^(n+1)].

Original entry on oeis.org

0, 1, 1, 1, 1, 4, 9, 6, 19, 28, 54, 109, 210, 373, 707, 1316, 2497, 4827, 9127, 17467, 33212, 63161, 121404, 232455, 446846, 860466, 1658020, 3200462, 6184814, 11971998, 23184215, 44934259, 87179855, 169330402, 329113635
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2004

Keywords

Crossrefs

Formula

a(n) = A095062(n) - A095068(n).

Extensions

a(34)-a(35) from Amiram Eldar, Jun 13 2024

A095066 Number of fib001 primes (A095086) in range ]2^n,2^(n+1)].

Original entry on oeis.org

0, 0, 0, 1, 3, 1, 6, 9, 15, 34, 63, 114, 206, 386, 725, 1366, 2601, 4803, 9144, 17331, 33106, 63067, 121112, 233785, 447721, 860033, 1659656, 3200843, 6188292, 11966122, 23175696, 44928209, 87187514, 169331564, 329134246
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2004

Keywords

Crossrefs

Formula

a(n) = A095061(n) - A095069(n).

Extensions

a(34)-a(35) from Amiram Eldar, Jun 13 2024

A095080 Fibeven primes, i.e., primes p whose Zeckendorf-expansion A014417(p) ends with zero.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 23, 29, 31, 37, 41, 47, 71, 73, 79, 83, 89, 97, 107, 109, 113, 131, 139, 149, 151, 157, 167, 173, 181, 191, 193, 199, 223, 227, 233, 241, 251, 257, 269, 277, 283, 293, 311, 317, 337, 353, 359, 367, 379, 397, 401, 409, 419, 421
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2004

Keywords

Crossrefs

Intersection of A000040 and A022342. Union of A095082 and A095087. Cf. A095060, A095081.

Programs

  • Maple
    F:= combinat[fibonacci]:
    b:= proc(n) option remember; local j;
          if n=0 then 0
        else for j from 2 while F(j+1)<=n do od;
             b(n-F(j))+2^(j-2)
          fi
        end:
    a:= proc(n) option remember; local p;
          p:= `if`(n=1, 1, a(n-1));
          do p:= nextprime(p);
             if b(p)::even then break fi
          od; p
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Mar 27 2016
  • Mathematica
    F = Fibonacci;
    b[n_] := b[n] = Module[{j},
         If[n == 0, 0, For[j = 2, F[j + 1] <= n, j++];
         b[n - F[j]] + 2^(j - 2)]];
    a[n_] := a[n] = Module[{p},
         p = If[n == 1, 1, a[n - 1]]; While[True,
         p = NextPrime[p]; If[ EvenQ[b[p]], Break[]]]; p];
    Array[a, 100] (* Jean-François Alcover, Jul 01 2021, after Alois P. Heinz *)
  • Python
    from sympy import fibonacci, primerange
    def a(n):
        k=0
        x=0
        while n>0:
            k=0
            while fibonacci(k)<=n: k+=1
            x+=10**(k - 3)
            n-=fibonacci(k - 1)
        return x
    def ok(n):
        return str(a(n))[-1]=="0"
    print([n for n in primerange(1, 1001) if ok(n)]) # Indranil Ghosh, Jun 07 2017

A095081 Fibodd primes, i.e., primes p whose Zeckendorf-expansion A014417(p) ends with one.

Original entry on oeis.org

17, 19, 43, 53, 59, 61, 67, 101, 103, 127, 137, 163, 179, 197, 211, 229, 239, 263, 271, 281, 307, 313, 331, 347, 349, 373, 383, 389, 433, 449, 457, 467, 491, 499, 509, 569, 577, 593, 601, 619, 643, 653, 661, 677, 739, 773, 787, 797, 821, 823
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2004

Keywords

Crossrefs

Intersection of A000040 and A003622. Union of A095086 and A095089. Cf. A095061, A095080.

Programs

  • Mathematica
    r = Map[Fibonacci, Range[2, 12]]; Select[Prime@ Range@ 144, Last@ Flatten@ Map[Position[r, #] &, Abs@ Differences@ NestWhileList[Function[k, k - SelectFirst[Reverse@ r, # < k &]], # + 1, # > 1 &]] == 1 &] (* Michael De Vlieger, Mar 27 2016, Version 10 *)
  • PARI
    genit(maxx)={for(n=1,maxx,q=(n-1)+(n+sqrtint(5*n^2))\2; if(isprime(q), print1(q,",")));} \\ Bill McEachen, Mar 26 2016
    
  • Python
    from sympy import fibonacci, primerange
    def a(n):
        k=0
        x=0
        while n>0:
            k=0
            while fibonacci(k)<=n: k+=1
            x+=10**(k - 3)
            n-=fibonacci(k - 1)
        return x
    def ok(n):
        return str(a(n))[-1]=="1"
    print([n for n in primerange(1, 1001) if ok(n)]) # Indranil Ghosh, Jun 07 2017

A095092 Number of 4k+3 primes whose Legendre-vector is a Dyck-path (A095102) in range ]2^n,2^(n+1)].

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 7, 10, 16, 30, 51, 88, 153, 277, 509, 905, 1660, 3079, 5535, 10234, 19053
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2004

Keywords

Crossrefs

Programs

  • PARI
    is(m) = {if(!isprime(m), return(0)); my(s=0); for(i=1, m-1, if((s+=kronecker(i, m))<0, return(0))); 1; }
    a(n) = {my(c=0); forstep(m=2^n+3*(n>1), 2^(n+1), 4, c+=is(m)); c; } \\ Jinyuan Wang, Jul 20 2020

Formula

a(n) = A095008(n) - A095093(n).
Previous Showing 41-50 of 143 results. Next