cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A380729 Smallest n-digit number e such that there exists a primitive Pythagorean n-digit quintuple (a,b,c,d,e) with 10^(n-1) <= a < b < c < d < e < 10^n.

Original entry on oeis.org

9, 27, 215, 2035, 20095, 200287, 2000851, 20002663, 200008317, 2000025997, 20000082213, 200000259021, 2000000817463, 20000002584459, 200000008167303, 2000000025828219, 20000000081661683, 200000000258208463, 2000000000816541333
Offset: 1

Views

Author

Jean-Marc Rebert, Jan 31 2025

Keywords

Comments

From David A. Corneth, Feb 01 2025: (Start)
Let s1, s2, s3, and s4 be primitive positive distinct integers such that s1^2 + s2^2 + s3^2 + s4^2 = S^2. As squares are 0 or 1 (mod 4) and the quintuple (s1, s2, s3, s4, S) is primitive they cannot all be even. Hence at least one of s1, s2, s3, s4 must be odd. Without loss of generality let s4 be odd. Then s1, s2 and s3 all have the same parity (even or odd).
We may write s1^2 + s2^2 + s3^2 + s4^2 = S^2 as s1^2 + s2^2 + s3^2 = S^2 - s4^2 = (S - s4)*(S + s4) and so look at divisor pairs of s1^2 + s2^2 + s3^2 that multiply to (S - s4)*(S + s4), solve for S and s4 to see if the quintuple (s1, s2, s3, s4, S) meets the criteria for a(n). (End)
[10000005, 10000018, 10000098, 10005204, 20002663] is a Pythagorean 8-digit quintuple, so a(8) <= 20002663.
From David Consiglio, Jr., Mar 05 2025: (Start)
a(9) <= 200008317 [100000000, 100000008, 100000220, 100016405, 200008317];
a(10) <= 2000026127 [1000000000, 1000000004, 1000000457, 1000051792, 2000026127];
a(11) <= 20000082345 [10000000008, 10000000030, 10000001006, 10000163645, 20000082345]. (End)
2e-(a+b+c+d) >= 1 for all quintuples, with equality if e is close to the lower bound. See C++ program for details. - Martin Fuller, Mar 18 2025

Examples

			Pythagorean n-digit quintuples in strictly increasing order:
  [2, 4, 5, 6, 9];
  [10, 12, 14, 17, 27];
  [100, 101, 110, 118, 215];
  [1000, 1005, 1008, 1056, 2035];
  [10005, 10006, 10008, 10170, 20095];
  [100000, 100005, 100038, 100530, 200287];
  [1000001, 1000010, 1000040, 1001650, 2000851];
  [10000005, 10000018, 10000098, 10005204, 20002663];
  [100000000, 100000008, 100000220, 100016405, 200008317];
  [1000000005, 1000000020, 1000000240, 1000051728, 2000025997];
  [10000000001, 10000000102, 10000000742, 10000163580, 20000082213];
  [100000000010, 100000000054, 100000001169, 100000516808, 200000259021];
  [1000000000005, 1000000000062, 1000000001382, 1000001633476, 2000000817463];
  [10000000000006, 10000000000050, 10000000003649, 10000005165212, 20000002584459];
  [100000000000037, 100000000000142, 100000000003326, 100000016331100, 200000008167303];
  [1000000000000041, 1000000000000150, 1000000000012304, 1000000051643942, 2000000025828219];
  [10000000000000018, 10000000000000210, 10000000000017809, 10000000163305328, 20000000081661683];
  [100000000000000146, 100000000000000309, 100000000000013904, 100000000516402566, 200000000258208463];
  [1000000000000000210, 1000000000000000482, 1000000000000066436, 1000000001633015537, 2000000000816541333]
		

Crossrefs

Programs

  • Java
    // See Links.

Formula

From Martin Fuller, Mar 16 2025: (Start)
a(n) > 2*10^(n-1) + ((2/3)*10^(n-1))^0.5.
n even: a(n) > 2*10^(n-1) + 10^(n/2-1) * 2.5819888...
n odd: a(n) > 2*10^(n-1) + 10^((n-1)/2-1) * 8.1649658...
See proof in the C++ program. (End)

Extensions

a(5) corrected by Jinyuan Wang, Feb 25 2025
a(8)-a(9) confirmed by Sean A. Irvine, Mar 06 2025
a(10)-a(19) from Martin Fuller, Mar 16 2025

A337251 Positive integers k such that k^2 = A^2+B^2+C^2 and A^3+B^3+C^3 = m^3, where gcd(A,B,C) = 1 and A, B, C, m are positive integers.

Original entry on oeis.org

75, 119, 551, 755, 4501, 4895, 16371, 56863, 61091, 74201, 201797, 336709, 534793, 596827, 879397, 1007541
Offset: 1

Views

Author

Mo Li, Aug 21 2020

Keywords

Comments

From Chai Wah Wu, Sep 04 2020: (Start)
A. Martin and R. Davis showed that 91091088729334859 = sqrt(11868013975030087^2+16269106368215226^2+88837226814909894^2) is a term (see Links).
Table of values for k, A, B, C, m:
k A B C m
---------------------------------------------
75 14 23 70 71
119 3 34 114 115
551 18 349 426 493
755 145 198 714 721
4501 1016 2364 3693 4013
4895 213 3450 3466 4357
16371 3542 9286 13009 14497
56863 6213 32194 46458 51157
61091 29233 29574 44754 51985
74201 32913 38444 54264 63185
201797 106677 117252 124876 168373
336709 110051 118044 295512 306467
534793 116457 286752 436136 476393
596827 202023 234550 510270 536023
879397 43472 613560 628485 782597
1007541 272267 417416 875656 914315
(End)

Examples

			56863 is in the sequence because 56863^2 = 6213^2 + 32194^2 + 46458^2, 6213^3 + 32194^3 + 46458^3 = 51157^3 and gcd(6213, 32194, 46458) = 1.
		

Crossrefs

Cf. A096910.
Previous Showing 11-12 of 12 results.