A380729 Smallest n-digit number e such that there exists a primitive Pythagorean n-digit quintuple (a,b,c,d,e) with 10^(n-1) <= a < b < c < d < e < 10^n.
9, 27, 215, 2035, 20095, 200287, 2000851, 20002663, 200008317, 2000025997, 20000082213, 200000259021, 2000000817463, 20000002584459, 200000008167303, 2000000025828219, 20000000081661683, 200000000258208463, 2000000000816541333
Offset: 1
Examples
Pythagorean n-digit quintuples in strictly increasing order: [2, 4, 5, 6, 9]; [10, 12, 14, 17, 27]; [100, 101, 110, 118, 215]; [1000, 1005, 1008, 1056, 2035]; [10005, 10006, 10008, 10170, 20095]; [100000, 100005, 100038, 100530, 200287]; [1000001, 1000010, 1000040, 1001650, 2000851]; [10000005, 10000018, 10000098, 10005204, 20002663]; [100000000, 100000008, 100000220, 100016405, 200008317]; [1000000005, 1000000020, 1000000240, 1000051728, 2000025997]; [10000000001, 10000000102, 10000000742, 10000163580, 20000082213]; [100000000010, 100000000054, 100000001169, 100000516808, 200000259021]; [1000000000005, 1000000000062, 1000000001382, 1000001633476, 2000000817463]; [10000000000006, 10000000000050, 10000000003649, 10000005165212, 20000002584459]; [100000000000037, 100000000000142, 100000000003326, 100000016331100, 200000008167303]; [1000000000000041, 1000000000000150, 1000000000012304, 1000000051643942, 2000000025828219]; [10000000000000018, 10000000000000210, 10000000000017809, 10000000163305328, 20000000081661683]; [100000000000000146, 100000000000000309, 100000000000013904, 100000000516402566, 200000000258208463]; [1000000000000000210, 1000000000000000482, 1000000000000066436, 1000000001633015537, 2000000000816541333]
Links
- Martin Fuller, C++ program
- Sean A. Irvine, Java program (github)
- Eric Weisstein's World of Mathematics, Pythagorean Quadruple.
Programs
-
Java
// See Links.
Formula
From Martin Fuller, Mar 16 2025: (Start)
a(n) > 2*10^(n-1) + ((2/3)*10^(n-1))^0.5.
n even: a(n) > 2*10^(n-1) + 10^(n/2-1) * 2.5819888...
n odd: a(n) > 2*10^(n-1) + 10^((n-1)/2-1) * 8.1649658...
See proof in the C++ program. (End)
Extensions
a(5) corrected by Jinyuan Wang, Feb 25 2025
a(8)-a(9) confirmed by Sean A. Irvine, Mar 06 2025
a(10)-a(19) from Martin Fuller, Mar 16 2025
Comments