cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-19 of 19 results.

A320134 Number of integer solutions to a^2 + b^2 + 2*c^2 + 12*d^2 = n.

Original entry on oeis.org

1, 4, 6, 8, 12, 8, 8, 16, 6, 12, 24, 8, 26, 32, 12, 32, 36, 32, 46, 56, 36, 40, 72, 32, 56, 76, 24, 64, 72, 40, 60, 80, 54, 64, 96, 48, 52, 96, 72, 80, 120, 32, 48, 104, 36, 104, 96, 64, 98, 124, 90, 64, 144, 72, 144, 160, 60, 136, 120, 104, 144, 160, 60, 112, 180
Offset: 0

Views

Author

Seiichi Manyama, Oct 06 2018

Keywords

Comments

a(n) > 0 for n >= 0.

Crossrefs

Formula

G.f.: theta_3(q)^2 * theta_3(q^2) * theta_3(q^12).

A320135 Number of integer solutions to a^2 + b^2 + 2*c^2 + 13*d^2 = n.

Original entry on oeis.org

1, 4, 6, 8, 12, 8, 8, 16, 6, 12, 24, 8, 24, 26, 8, 28, 28, 40, 46, 40, 56, 28, 48, 64, 24, 76, 72, 32, 80, 32, 32, 92, 54, 80, 80, 64, 68, 56, 80, 64, 88, 112, 64, 40, 88, 52, 64, 128, 56, 108, 110, 64, 106, 80, 76, 160, 104, 96, 168, 56, 124, 112, 120, 124, 92, 208, 96
Offset: 0

Views

Author

Seiichi Manyama, Oct 06 2018

Keywords

Comments

a(n) > 0 for n >= 0.

Crossrefs

Formula

G.f.: theta_3(q)^2 * theta_3(q^2) * theta_3(q^13).

A320136 Number of integer solutions to a^2 + b^2 + 2*c^2 + 14*d^2 = n.

Original entry on oeis.org

1, 4, 6, 8, 12, 8, 8, 16, 6, 12, 24, 8, 24, 24, 2, 24, 24, 32, 54, 40, 40, 48, 36, 40, 56, 44, 72, 80, 48, 40, 24, 64, 66, 80, 96, 48, 84, 72, 40, 72, 72, 80, 144, 56, 24, 104, 12, 96, 120, 68, 102, 96, 120, 56, 80, 80, 98, 120, 132, 120, 72, 120, 64, 152, 84, 72, 240, 120
Offset: 0

Views

Author

Seiichi Manyama, Oct 06 2018

Keywords

Comments

a(n) > 0 for n >= 0.

Crossrefs

Formula

G.f.: theta_3(q)^2 * theta_3(q^2) * theta_3(q^14).

A319822 Number of solutions to x^2 + 2*y^2 + 5*z^2 + 5*w^2 = n.

Original entry on oeis.org

1, 2, 2, 4, 2, 4, 12, 8, 18, 14, 4, 28, 12, 24, 32, 0, 34, 20, 14, 28, 4, 32, 44, 40, 28, 10, 40, 56, 64, 72, 8, 48, 66, 24, 68, 8, 46, 88, 60, 32, 4, 52, 64, 116, 76, 12, 64, 72, 60, 82, 26, 72, 104, 104, 88, 8, 112, 56, 136, 140, 8, 136, 96, 72, 98, 16, 72, 132
Offset: 0

Views

Author

Jianing Song, Sep 28 2018

Keywords

Comments

Ramanujan (1917) claimed that there are exactly 55 possible choice for a <= b <= c <= d such that a*x^2 + b*y^2 + c*z^2 + d*w^2 represents all natural numbers, but L. E. Dickson (1927) has pointed out that Ramanujan has overlooked the fact that (1, 2, 5, 5) does not represent 15. Consequently, there are only 54 forms. This sequence is related to the form (1, 2, 5, 5). As is proven, a(n) = 0 iff n = 15.
There are also many (a, b, c, d) other than this such that a*x^2 + b*y^2 + c*z^2 + d*w^2 represents all but finitely many natural numbers. For example, x^2 + y^2 + 5*z^2 + 5*w^2 represents all natural numbers except for 3 (cf. A236929); x^2 + y^2 + z^2 + d*w^2 (d == 2 (mod 4) or d = 9, 17, 25, 36, 68, 100 and some others) represents all natural numbers except for those of the form 4^i*(8*j + 7) and < d; x^2 + 2*y^2 + 6*z^2 + d*w^2 (d == 2 (mod 4) or d = 11, 19 and some others) represents all natural numbers except for those of the form 4^i*(8*j + 5) and < d.

Examples

			a(5) = 4 because 0^2 + 2*0^2 + 5*0^2 + 5*1^2 = 0^2 + 2*0^2 + 5*0^2 + 5*(-1)^2 = 0^2 + 2*0^2 + 5*1^2 + 5*0^2 = 0^2 + 2*0^2 + 5*(-1)^2 + 5*0^2 = 5 and these are the only four solutions to x^2 + 2*y^2 + 5*z^2 + 5*w^2 = 5.
		

References

  • J. H. Conway, Universal quadratic forms and the fifteen theorem, Contemporary Mathematics 272 (1999), 23-26.

Crossrefs

From Seiichi Manyama, Oct 07 2018: (Start)
54 possible choice:
k | a, b, c, d | Number of solutions
------+-----------------+--------------------
1 | 1, 1, 1, 1 | A000118
2 | 1, 1, 1, 2 | A236928
3 | 1, 1, 1, 3 | A236926
4 | 1, 1, 1, 4 | A236923
5 | 1, 1, 1, 5 | A236930
6 | 1, 1, 1, 6 | A236931
7 | 1, 1, 1, 7 | A236932
8 | 1, 1, 2, 2 | A097057
9 | 1, 1, 2, 3 | A320124
10 | 1, 1, 2, 4 | A320125
11 | 1, 1, 2, 5 | A320126
12 | 1, 1, 2, 6 | A320127
13 | 1, 1, 2, 7 | A320128
14 | 1, 1, 2, 8 | A320130
15 | 1, 1, 2, 9 | A320131
16 | 1, 1, 2, 10 | A320132
17 | 1, 1, 2, 11 | A320133
18 | 1, 1, 2, 12 | A320134
19 | 1, 1, 2, 13 | A320135
20 | 1, 1, 2, 14 | A320136
21 | 1, 1, 3, 3 | A034896
22 | 1, 1, 3, 4 | A272364
23 | 1, 1, 3, 5 | A320147
24 | 1, 1, 3, 6 | A320148
25 | 1, 2, 2, 2 | A320149
26 | 1, 2, 2, 3 | A320150
27 | 1, 2, 2, 4 | A236924
28 | 1, 2, 2, 5 | A320151
29 | 1, 2, 2, 6 | A320152
30 | 1, 2, 2, 7 | A320153
31 | 1, 2, 3, 3 | A320138
32 | 1, 2, 3, 4 | A320139
33 | 1, 2, 3, 5 | A320140
34 | 1, 2, 3, 6 | A033712
35 | 1, 2, 3, 7 | A320188
36 | 1, 2, 3, 8 | A320189
37 | 1, 2, 3, 9 | A320190
38 | 1, 2, 3, 10 | A320191
39 | 1, 2, 4, 4 | A320193
40 | 1, 2, 4, 5 | A320194
41 | 1, 2, 4, 6 | A320195
42 | 1, 2, 4, 7 | A320196
43 | 1, 2, 4, 8 | A033720
44 | 1, 2, 4, 9 | A320197
45 | 1, 2, 4, 10 | A320198
46 | 1, 2, 4, 11 | A320199
47 | 1, 2, 4, 12 | A320200
48 | 1, 2, 4, 13 | A320201
49 | 1, 2, 4, 14 | A320202
50 | 1, 2, 5, 6 | A320163
51 | 1, 2, 5, 7 | A320164
52 | 1, 2, 5, 8 | A320165
53 | 1, 2, 5, 9 | A320166
54 | 1, 2, 5, 10 | A033722
(End)

Programs

  • Maple
    JT := (k, n) -> JacobiTheta3(0, x^k)^n:
    A319822List := proc(len) series(JT(1,1)*JT(2,1)*JT(5,2), x, len+1);
    seq(coeff(%, x, j), j=0..len) end: A319822List(67); # Peter Luschny, Oct 01 2018
  • Mathematica
    CoefficientList[EllipticTheta[3, 0, q] EllipticTheta[3, 0, q^2] EllipticTheta[ 3, 0, q^5]^2 + O[q]^100, q] (* Jean-François Alcover, Jun 15 2019 *)
  • PARI
    A004018(n) = if(n, 4*sumdiv(n,d,kronecker(-4,d)), 1);
    A033715(n) = if(n, 2*sumdiv(n,d,kronecker(-2,d)), 1);
    a(n) = my(i=0); for(k=0, n\5, i+=A004018(k)*A033715(n-5*k)); i
    
  • PARI
    N=99; q='q+O('q^N);
    gf = (eta(q^2)*eta(q^4))^3*eta(q^10)^10/(eta(q)*eta(q^5)^2*eta(q^8)*eta(q^20)^2)^2;
    Vec(gf) \\ Altug Alkan, Oct 01 2018
    
  • Sage
    Q = DiagonalQuadraticForm(ZZ, [1, 2, 5, 5])
    Q.theta_series(68).list() # Peter Luschny, Oct 01 2018

Formula

a(n) = Sum_{k=0..floor(n/5)} A004018(k)*A033715(n-5*k).
G.f.: theta_3(q)*theta_3(q^2)*theta_3(q^5)^2, where theta_3() is the Jacobi theta function.

A133690 Expansion of (phi(-q) * phi(q^2))^2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -4, 8, -16, 24, -24, 32, -32, 24, -52, 48, -48, 96, -56, 64, -96, 24, -72, 104, -80, 144, -128, 96, -96, 96, -124, 112, -160, 192, -120, 192, -128, 24, -192, 144, -192, 312, -152, 160, -224, 144, -168, 256, -176, 288, -312, 192, -192, 96, -228, 248, -288
Offset: 0

Views

Author

Michael Somos, Sep 20 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 4*q + 8*q^2 - 16*q^3 + 24*q^4 - 24*q^5 + 32*q^6 - 32*q^7 + 24*q^8 - ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 4, 0, q] EllipticTheta[ 3, 0, q^2])^2, {q, 0, n}]; (* Michael Somos, Oct 30 2015 *)
    a[ n_] := If[ n < 1, Boole[n == 0], -4 Which[ OddQ[n], DivisorSigma[ 1, n], Mod[n, 4] > 0, -2 DivisorSigma[1, n/2], True, -6 DivisorSum[n/4, # Mod[#, 2] &]]]; (* Michael Somos, Oct 30 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, -4 * if( n%2, sigma(n), n%4, -2 * sigma(n/2), -6 * sumdiv( n/4, d, (d%2)*d )))};
    
  • PARI
    {a(n) = local(A); if ( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^2 * eta(x^4 + A)^5 / (eta(x^2 + A)^3 * eta(x^8 + A)^2))^2, n))};

Formula

Expansion of (eta(q)^2 * eta(q^4)^5 / (eta(q^2)^3 * eta(q^8)^2))^2 in powers of q.
Euler transform of period 8 sequence [ -4, 2, -4, -8, -4, 2, -4, -4, ...].
a(n) = -4 * b(n) where b() is multiplicative with b(2) = -2, b(2^e) = -6 if e>1, b(p^e) = (p^(e+1) - 1) / (p - 1) if p>2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 32 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A133657.
G.f.: ( Product_{k>0} (1 - x^k)^2 * (1 + x^(2*k))^3 / (1 + x^(4*k))^2 )^2.
a(n) = (-1)^n * A097057(n). Convolution square of A133692.
a(2*n) = 8 * A046897(n) unless n=0. a(2*n + 1) = A008438(n). a(4*n) = A004011(n). a(4*n + 1) = -4 * A112610(n). a(4*n + 3) = -16 * A097723(n).

A111973 Expansion of ((eta(q^2)eta(q^4))^6/(eta(q)eta(q^8))^4-1)/4 in powers of q.

Original entry on oeis.org

1, 2, 4, 6, 6, 8, 8, 6, 13, 12, 12, 24, 14, 16, 24, 6, 18, 26, 20, 36, 32, 24, 24, 24, 31, 28, 40, 48, 30, 48, 32, 6, 48, 36, 48, 78, 38, 40, 56, 36, 42, 64, 44, 72, 78, 48, 48, 24, 57, 62, 72, 84, 54, 80, 72, 48, 80, 60, 60, 144, 62, 64, 104, 6, 84, 96, 68, 108, 96, 96, 72
Offset: 1

Views

Author

Michael Somos, Aug 23 2005

Keywords

References

  • Bruce C. Berndt, Ramanujan's Notebooks Part V, Springer-Verlag, see p. 373, Entry 31.
  • Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 78, Eq. (32.29).

Crossrefs

Cf. A097057(n)=4*a(n), if n>0.

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1)-1)/(p-1); f[2, 1] = 2; f[2, e_] := 6; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 22 2023 *)
  • PARI
    a(n)=if(n<1, 0, sumdiv(n,d, d*(-1)^((d+1)*(n/d+1))*[2,1,0,1][n/d%4+1]))
    
  • PARI
    {a(n)= local(A); if(n<1, 0, A=x*O(x^n); polcoeff( ((eta(x^2+A)*eta(x^4+A))^6/(eta(x+A)*eta(x^8+A))^4-1)/4, n))}
    
  • PARI
    a(n)= local(x); if(n<1, 0, x=2^valuation(n,2); sigma(n/x)*if(x>2,6,x))
    
  • PARI
    {a(n)=local(A,p,e); if(n<1, 0, A=factor(n); prod(k=1,matsize(A)[1], if(p=A[k,1], e=A[k,2]; if(p==2, 2+4*(e>1), (p^(e+1)-1)/(p-1)))))}

Formula

Multiplicative with a(2)=2, a(2^e)=6 if e>1, a(p^e)=(p^(e+1)-1)/(p-1) if p>2.
G.f.: ((theta_3(q)theta_3(q^2))^2-1)/4 where theta_3(q)=1+2(q+q^4+q^9+...).
G.f.: Sum_{k>0} 2*x^(4k)/(1+x^(4k))^2 +x^(2k-1)/(1-x^(2k-1))^2 = Sum_{k>0} +(2+(-1)^k)k x^(2k)/(1+x^(2k)) +(2k-1)x^(2k-1)/(1-x^(2k-1)). - Michael Somos, Oct 22 2005

A136028 Expansion of (phi(q) * phi(q^2))^3 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 6, 18, 44, 90, 144, 212, 288, 330, 418, 528, 588, 836, 1008, 1056, 1440, 1386, 1356, 1894, 1644, 2064, 2880, 2484, 3168, 3428, 2838, 3696, 3864, 4128, 5040, 5280, 5760, 5418, 5656, 5988, 5376, 7678, 8208, 7572, 10080, 8208, 7788, 10560, 8652, 10404, 13104
Offset: 0

Views

Author

Michael Somos, Dec 10 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 6*q + 18*q^2 + 44*q^3 + 90*q^4 + 144*q^5 + 212*q^6 + 288*q^7 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(8), 3), 46);  A[1] + 6*A[2] + 18*A[3] + 44*A[4] + 90*A[5] + 144*A[6] + 212*A[7]; /* Michael Somos, Oct 14 2015 */
  • Mathematica
    nmax=60; CoefficientList[Series[Product[((1-x^k)^2 * (1+x^k)^4 * (1+x^(2*k)) / (1+x^(4*k))^2)^3,{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 14 2015 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^2])^3, {q, 0, n}]; (* Michael Somos, Oct 14 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( ((eta(x^2 + A) * eta(x^4 + A))^3 / (eta(x + A) * eta(x^8 + A))^2)^3, n))};
    

Formula

Expansion of (eta(q^2) * eta(q^4))^9 / (eta(q) * eta(q^8))^6 in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1/(8 t)) = 2^(9/2) (t/i)^3 f(t) where q = exp(2 Pi i t).
G.f.: (Product_{k>0} (1 - x^k)^2 * (1 + x^k)^4 * (1 + x^(2*k)) / (1 + x^(4*k))^2)^3.
a(n) = A029713(n) + 6 * A030207(n). Convolution of A033715 and A097057.
a(n) = A028578(4*n). - Michael Somos, Oct 14 2015

A236922 Number of integer solutions to a^2 + b^2 + 4*c^2 + 4*d^2 = n.

Original entry on oeis.org

1, 4, 4, 0, 8, 24, 16, 0, 24, 52, 24, 0, 32, 56, 32, 0, 24, 72, 52, 0, 48, 128, 48, 0, 96, 124, 56, 0, 64, 120, 96, 0, 24, 192, 72, 0, 104, 152, 80, 0, 144, 168, 128, 0, 96, 312, 96, 0, 96, 228, 124, 0, 112, 216, 160, 0, 192, 320, 120, 0, 192, 248, 128, 0, 24, 336, 192, 0, 144, 384, 192, 0, 312, 296, 152, 0, 160, 384, 224, 0, 144, 484, 168, 0, 256, 432, 176, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 14 2014

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory);
    s:=n-> if whattype(n) = integer then sigma(n) else 0; fi;
    f:=proc(n) global s;
      if (n mod 4) = 0 then 8*s(n/4)-32*s(n/16)
    elif (n mod 4) = 2 then 4*s(n/2)
    elif (n mod 4) = 3 then 0
    else 4*s(n); fi; end;
    [seq(f(n),n=1..100)];
    # a(0)=1 must be added separately
  • Mathematica
    s[n_] := If[IntegerQ[n], DivisorSigma[1, n], 0]; a[n_] := Which[Mod[n, 4] == 0 , 8*s[n/4]-32*s[n/16], Mod[n, 4] == 2, 4*s[n/2], Mod[n, 4] == 3, 0, True, 4*s[n]]; a[0] = 1; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 06 2014, after Maple *)

Formula

See Maple code.
G.f.: theta_3(q)^2*theta_3(q^4)^2, where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Aug 03 2018

A317646 Expansion of (1 + theta_3(q))^2*(1 + theta_3(q^2))^2/16, where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 3, 4, 5, 4, 5, 4, 5, 8, 8, 8, 11, 8, 6, 8, 5, 10, 14, 12, 16, 12, 11, 8, 11, 14, 14, 20, 18, 12, 14, 12, 5, 20, 19, 20, 30, 16, 17, 16, 16, 18, 24, 20, 25, 28, 14, 16, 11, 22, 25, 28, 34, 20, 30, 24, 18, 28, 26, 28, 42, 24, 20, 32, 5, 28, 36, 28, 41, 32, 32, 20, 30, 30, 28, 44
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 02 2018

Keywords

Comments

Number of nonnegative integer solutions to the equation x^2 + y^2 + 2*z^2 + 2*w^2 = n.

Examples

			G.f. = 1 + 2*q + 3*q^2 + 4*q^3 + 5*q^4 + 4*q^5 + 5*q^6 + 4*q^7 + 5*q^8 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 75; CoefficientList[Series[(1 + EllipticTheta[3, 0, q])^2 (1 + EllipticTheta[3, 0, q^2])^2/16, {q, 0, nmax}], q]
    nmax = 75; CoefficientList[Series[(1 + QPochhammer[-q, -q]/QPochhammer[q, -q])^2 (1 + QPochhammer[-q^2, -q^2]/QPochhammer[q^2, -q^2])^2/16, {q, 0, nmax}], q]
Previous Showing 11-19 of 19 results.