cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A097669 Decimal expansion of the constant 5*exp(psi(3/5)+EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.

Original entry on oeis.org

1, 9, 0, 7, 9, 5, 9, 5, 3, 2, 5, 4, 3, 5, 4, 2, 5, 2, 2, 5, 5, 3, 3, 3, 8, 1, 3, 9, 7, 2, 9, 5, 2, 0, 3, 6, 9, 0, 8, 5, 1, 6, 0, 6, 8, 3, 5, 9, 0, 8, 2, 9, 6, 8, 2, 2, 8, 2, 2, 3, 5, 9, 6, 0, 8, 1, 0, 7, 0, 6, 3, 7, 8, 6, 8, 8, 6, 5, 5, 0, 4, 0, 3, 9, 9, 7, 2, 3, 6, 3, 5, 8, 3, 0, 9, 0, 1, 3, 8, 0, 7, 5, 3, 9, 0
Offset: 1

Views

Author

Paul D. Hanna, Aug 25 2004

Keywords

Comments

This constant appears in Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link) and is involved in the exact determination of asymptotic limits of certain order-5 linear recursions with varying coefficients (see A097680 for example).

Examples

			c = 1.90795953254354252255333813972952036908516068359082968228223...
		

References

  • A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.

Crossrefs

Programs

  • Mathematica
    RealDigits[ GoldenRatio^(Sqrt[5]/2)/5^(1/4)*E^(Pi/2Sqrt[1 - 2/Sqrt[5]]), 10, 105][[1]] (* Robert G. Wilson v, Aug 27 2004 *)
  • PARI
    5*exp(psi(3/5)+Euler)

Formula

c = ((sqrt(5)+1)/2)^(sqrt(5)/2)/5^(1/4)*exp(Pi/2*sqrt(1-2/sqrt(5))).

Extensions

More terms from Robert G. Wilson v, Aug 27 2004

A097670 Decimal expansion of the constant 5*exp(psi(4/5) + EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.

Original entry on oeis.org

3, 3, 9, 2, 7, 6, 4, 2, 7, 8, 9, 2, 7, 8, 4, 9, 8, 0, 7, 7, 0, 4, 7, 5, 5, 0, 5, 6, 5, 5, 4, 4, 7, 1, 2, 8, 3, 9, 2, 7, 4, 0, 1, 0, 9, 2, 5, 8, 6, 0, 8, 4, 4, 2, 2, 3, 4, 7, 8, 0, 8, 4, 4, 1, 9, 3, 5, 2, 4, 6, 3, 6, 1, 5, 9, 8, 0, 3, 4, 6, 1, 3, 5, 1, 7, 3, 5, 0, 1, 0, 5, 1, 9, 3, 2, 9, 7, 8, 5, 7, 3, 4, 6, 7, 3
Offset: 1

Views

Author

Paul D. Hanna, Aug 25 2004

Keywords

Comments

This constant appears in Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link) and is involved in the exact determination of asymptotic limits of certain order-5 linear recursions with varying coefficients (see A097680 for example).

Examples

			c = 3.39276427892784980770475505655447128392740109258608442234780...
		

References

  • A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.

Crossrefs

Programs

  • Mathematica
    RealDigits[ GoldenRatio^(-Sqrt[5]/2)/5^(1/4)*E^(Pi/2Sqrt[1 + 2/Sqrt[5]]), 10, 105][[1]] (* Robert G. Wilson v, Aug 27 2004 *)
  • PARI
    5*exp(psi(4/5)+Euler)

Formula

c = ((sqrt(5)+1)/2)^(-sqrt(5)/2)/5^(1/4)*exp(Pi/2*sqrt(1+2/sqrt(5))).

Extensions

More terms from Robert G. Wilson v, Aug 27 2004

A097672 Decimal expansion of the constant 6*exp(psi(5/6) + EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.

Original entry on oeis.org

4, 3, 8, 5, 2, 4, 5, 9, 8, 6, 2, 5, 0, 8, 0, 8, 1, 7, 3, 6, 9, 9, 4, 8, 9, 9, 4, 3, 2, 2, 9, 5, 6, 2, 0, 7, 7, 6, 5, 0, 8, 0, 1, 2, 8, 5, 0, 0, 9, 0, 2, 7, 6, 3, 0, 4, 2, 0, 0, 6, 5, 5, 4, 6, 7, 7, 6, 4, 3, 3, 1, 5, 6, 4, 6, 0, 8, 4, 8, 1, 1, 5, 4, 4, 3, 9, 9, 7, 3, 9, 5, 5, 1, 5, 6, 0, 8, 7, 7, 8, 8, 4, 6, 6, 7
Offset: 1

Views

Author

Paul D. Hanna, Aug 25 2004

Keywords

Comments

This constant appears in Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link) and is involved in the exact determination of asymptotic limits of certain order-6 linear recursions with varying coefficients (see A097681 for example).

Examples

			c = 4.38524598625080817369948994322956207765080128500902763042006...
		

References

  • A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.

Crossrefs

Programs

  • Mathematica
    RealDigits[1/Sqrt[12]*E^(Pi/2Sqrt[3]), 10, 105][[1]] (* Robert G. Wilson v, Aug 27 2004 *)
  • PARI
    6*exp(psi(5/6)+Euler)

Formula

c = 1/sqrt(12)*exp(Pi/2*sqrt(3)).

Extensions

More terms from Robert G. Wilson v, Aug 27 2004

A097674 Decimal expansion of the constant 8*exp(psi(3/8) + EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.

Original entry on oeis.org

9, 0, 7, 2, 4, 5, 8, 1, 7, 8, 8, 2, 1, 6, 4, 6, 0, 7, 5, 3, 8, 7, 9, 4, 5, 2, 4, 7, 9, 2, 0, 8, 1, 2, 1, 3, 7, 8, 7, 7, 7, 5, 2, 5, 4, 2, 3, 5, 8, 7, 4, 9, 5, 9, 0, 6, 8, 7, 1, 8, 5, 3, 7, 9, 4, 1, 1, 7, 5, 9, 2, 2, 5, 6, 2, 2, 2, 4, 4, 6, 9, 0, 5, 4, 4, 4, 2, 7, 0, 6, 8, 3, 1, 3, 0, 4, 9, 1, 8, 7, 8, 8, 7, 0, 9
Offset: 0

Views

Author

Paul D. Hanna, Aug 25 2004

Keywords

Comments

This constant appears in Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link) and is involved in the exact determination of asymptotic limits of certain order-8 linear recursions with varying coefficients (see A097682 for example).

Examples

			c = 0.90724581788216460753879452479208121378777525423587495906871...
		

References

  • A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.

Crossrefs

Programs

  • Mathematica
    RealDigits[(1 + Sqrt[2])^(Sqrt[2])/2E^(-Pi/2*(Sqrt[2] - 1)), 10, 105][[1]] (* Robert G. Wilson v, Aug 27 2004 *)
  • PARI
    8*exp(psi(3/8)+Euler)

Formula

c = (1+sqrt(2))^(sqrt(2))/2*exp(-Pi/2*(sqrt(2)-1)).

Extensions

More terms from Robert G. Wilson v, Aug 27 2004

A097675 Decimal expansion of the constant 8*exp(psi(5/8) + EulerGamma), where EulerGamma is the Euler-Mascheroni constant (A001620) and psi(x) is the digamma function.

Original entry on oeis.org

3, 3, 3, 3, 2, 5, 2, 1, 2, 6, 5, 8, 5, 4, 1, 7, 2, 1, 5, 4, 0, 0, 3, 9, 0, 7, 6, 9, 7, 2, 1, 0, 2, 2, 1, 1, 7, 4, 3, 9, 8, 0, 2, 5, 9, 7, 2, 7, 6, 5, 5, 4, 6, 9, 6, 6, 2, 8, 2, 7, 2, 9, 1, 3, 5, 2, 7, 9, 3, 4, 3, 6, 8, 2, 1, 4, 6, 6, 0, 7, 0, 5, 8, 9, 7, 4, 3, 8, 2, 5, 4, 1, 8, 2, 9, 5, 0, 2, 6, 6, 2, 0, 6, 3, 4
Offset: 1

Views

Author

Paul D. Hanna, Aug 25 2004

Keywords

Comments

This constant appears in Benoit Cloitre's generalized Euler-Gauss formula for the Gamma function (see Cloitre link) and is involved in the exact determination of asymptotic limits of certain order-8 linear recursions with varying coefficients (see A097682 for example).

Examples

			c = 3.33325212658541721540039076972102211743980259727655469662827...
		

References

  • A. M. Odlyzko, Linear recurrences with varying coefficients, in Handbook of Combinatorics, Vol. 2, R. L. Graham, M. Grotschel and L. Lovasz, eds., Elsevier, Amsterdam, 1995, pp. 1135-1138.

Crossrefs

Programs

  • Mathematica
    RealDigits[(1 + Sqrt[2])^(Sqrt[2])/2E^(Pi/2*(Sqrt[2] - 1)), 10, 105][[1]] (* Robert G. Wilson v, Aug 27 2004 *)
  • PARI
    8*exp(psi(5/8)+Euler)

Formula

c = (1+sqrt(2))^(sqrt(2))/2*exp(Pi/2*(sqrt(2)-1)).

Extensions

More terms from Robert G. Wilson v, Aug 27 2004

A246499 Decimal expansion of zeta(2)/exp(gamma), gamma being the Euler-Mascheroni constant.

Original entry on oeis.org

9, 2, 3, 5, 6, 3, 8, 3, 1, 6, 7, 4, 1, 8, 1, 3, 8, 2, 3, 2, 3, 5, 0, 9, 9, 5, 3, 9, 8, 7, 7, 0, 3, 9, 1, 6, 8, 4, 6, 9, 3, 1, 9, 6, 3, 2, 6, 1, 1, 1, 6, 3, 2, 5, 2, 0, 3, 5, 9, 5, 8, 3, 1, 6, 0, 2, 9, 7, 2, 3, 4, 3, 0, 5, 8, 2, 6, 0, 4, 8, 0, 9, 0, 9, 1, 2, 4, 9, 7, 7, 5, 0, 5, 2, 6, 5, 6, 2, 9, 8, 7, 9, 1, 5, 2
Offset: 0

Views

Author

Stanislav Sykora, Nov 14 2014

Keywords

Comments

It follows from Mertens theorem that this constant is the limit for large m of log(prime(m))*Product_{k=1..m} 1/(1 + 1/prime(k)).

Examples

			0.9235638316741813823235099539877039168469319632611163252035958316...
		

Crossrefs

Programs

  • Magma
    R:=RealField(100); Pi(R)^2/(6*Exp(EulerGamma(R))); // G. C. Greubel, Aug 30 2018
  • Mathematica
    RealDigits[Zeta[2]/E^EulerGamma, 10, 100][[1]] (* Alonso del Arte, Nov 14 2014 *)
  • PARI
    Pi^2/6/exp(Euler)
    

Formula

Equals Pi^2/(6*exp(gamma)).
Equals lim_{m->infinity} log(prime(m))*Product_{k=1..m} 1/(1 + 1/prime(k)).
Equals A013661/A073004. - Michel Marcus, Nov 18 2014
Previous Showing 11-16 of 16 results.