A329741
Number of compositions of n whose multiplicities cover an initial interval of positive integers.
Original entry on oeis.org
1, 1, 1, 3, 6, 11, 14, 34, 52, 114, 225, 464, 539, 1183, 1963, 3753, 6120, 11207, 19808, 38254, 77194, 147906, 224853, 374216, 611081, 1099933, 2129347, 3336099, 5816094, 9797957, 17577710, 29766586, 53276392, 93139668, 163600815, 324464546, 637029845, 1010826499
Offset: 0
The a(1) = 1 through a(6) = 14 compositions:
(1) (2) (3) (4) (5) (6)
(1,2) (1,3) (1,4) (1,5)
(2,1) (3,1) (2,3) (2,4)
(1,1,2) (3,2) (4,2)
(1,2,1) (4,1) (5,1)
(2,1,1) (1,1,3) (1,1,4)
(1,2,2) (1,2,3)
(1,3,1) (1,3,2)
(2,1,2) (1,4,1)
(2,2,1) (2,1,3)
(3,1,1) (2,3,1)
(3,1,2)
(3,2,1)
(4,1,1)
Looking at run-lengths instead of multiplicities gives
A329766.
-
normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],normQ[Length/@Split[Sort[#]]]&]],{n,20}]
A329750
Triangle read by rows where T(n,k) is the number of compositions of n >= 1 with runs-resistance n - k, 1 <= k <= n.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 2, 3, 2, 1, 2, 6, 6, 1, 1, 0, 4, 9, 15, 3, 1, 0, 2, 16, 22, 22, 1, 1, 0, 0, 8, 37, 38, 41, 3, 1, 0, 0, 0, 26, 86, 69, 72, 2, 1, 0, 0, 0, 2, 78, 175, 124, 129, 3, 1, 0, 0, 0, 0, 14, 202, 367, 226, 213, 1, 1, 0, 0, 0, 0, 0, 52, 469, 750, 376, 395, 5, 1
Offset: 1
Triangle begins:
1
1 1
2 1 1
2 3 2 1
2 6 6 1 1
0 4 9 15 3 1
0 2 16 22 22 1 1
0 0 8 37 38 41 3 1
0 0 0 26 86 69 72 2 1
0 0 0 2 78 175 124 129 3 1
0 0 0 0 14 202 367 226 213 1 1
0 0 0 0 0 52 469 750 376 395 5 1
Row n = 6 counts the following compositions:
(1,1,3,1) (1,1,4) (1,5) (3,3) (6)
(1,3,1,1) (4,1,1) (2,4) (2,2,2)
(1,1,1,2,1) (1,1,1,3) (4,2) (1,1,1,1,1,1)
(1,2,1,1,1) (1,2,2,1) (5,1)
(2,1,1,2) (1,2,3)
(3,1,1,1) (1,3,2)
(1,1,1,1,2) (1,4,1)
(1,1,2,1,1) (2,1,3)
(2,1,1,1,1) (2,3,1)
(3,1,2)
(3,2,1)
(1,1,2,2)
(1,2,1,2)
(2,1,2,1)
(2,2,1,1)
The version with rows reversed is
A329744.
-
runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1;
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],runsres[#]==n-k&]],{n,10},{k,n}]
A329864
Number of compositions of n with the same runs-resistance as cuts-resistance.
Original entry on oeis.org
1, 0, 0, 0, 0, 2, 5, 10, 17, 27, 68, 107, 217, 420, 884, 1761, 3679, 7469, 15437, 31396, 64369
Offset: 0
The a(5) = 2 through a(8) = 17 compositions:
(1112) (1113) (1114) (1115)
(2111) (1122) (1222) (1133)
(2211) (2221) (3311)
(3111) (4111) (5111)
(11211) (11122) (11222)
(11311) (11411)
(21112) (12221)
(22111) (21113)
(111121) (22211)
(121111) (31112)
(111131)
(111221)
(112112)
(112211)
(122111)
(131111)
(211211)
For example, the runs-resistance of (111221) is 3 because we have: (111221) -> (321) -> (111) -> (3), while the cuts-resistance is also 3 because we have: (111221) -> (112) -> (1) -> (), so (111221) is counted under a(8).
The version for binary expansion is
A329865.
Compositions counted by runs-resistance are
A329744.
Compositions counted by cuts-resistance are
A329861.
Compositions with runs-resistance = cuts-resistance minus 1 are
A329869.
Cf.
A003242,
A098504,
A114901,
A242882,
A318928,
A319411,
A319416,
A319420,
A319421,
A329867,
A329868.
-
runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1;
degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1;
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],runsres[#]==degdep[#]&]],{n,0,10}]
A333629
Least k such that the runs-resistance of the k-th composition in standard order is n.
Original entry on oeis.org
1, 3, 5, 11, 27, 93, 859, 13789, 1530805, 1567323995
Offset: 0
The sequence together with the corresponding compositions begins:
1: (1)
3: (1,1)
5: (2,1)
11: (2,1,1)
27: (1,2,1,1)
93: (2,1,1,2,1)
859: (1,2,2,1,2,1,1)
13789: (1,2,2,1,1,2,1,1,2,1)
1530805: (2,1,1,2,2,1,2,1,1,2,1,2,2,1)
For example, starting with 13789 and repeatedly applying A333627 gives: 13789 -> 859 -> 110 -> 29 -> 11 -> 6 -> 3 -> 2, corresponding to the compositions: (1,2,2,1,1,2,1,1,2,1) -> (1,2,2,1,2,1,1) -> (1,2,1,1,2) -> (1,1,2,1) -> (2,1,1) -> (1,2) -> (1,1) -> (2).
Positions of first appearances in
A333628 = number of times applying
A333627 to reach a power of 2, starting with n.
All of the following pertain to compositions in standard order (
A066099):
- The partial sums from the right are
A048793.
- Adjacent equal pairs are counted by
A124762.
- Equal runs are counted by
A124767.
- Strict compositions are ranked by
A233564.
- The partial sums from the left are
A272020.
- Constant compositions are ranked by
A272919.
- Normal compositions are ranked by
A333217.
- Anti-runs are counted by
A333381.
- Adjacent unequal pairs are counted by
A333382.
Cf.
A029931,
A098504,
A114994,
A225620,
A228351,
A238279,
A242882,
A318928,
A329744,
A329747,
A333489.
-
nn=1000;
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
stcrun[n_]:=Total[2^(Accumulate[Reverse[Length/@Split[stc[n]]]])]/2;
seq=Table[Length[NestWhileList[stcrun,n,Length[stc[#]]>1&]]-1,{n,nn}];
Table[Position[seq,i][[1,1]],{i,Union[seq]}]
A329748
Number of complete compositions of n whose multiplicities cover an initial interval of positive integers.
Original entry on oeis.org
1, 1, 0, 2, 3, 3, 6, 12, 12, 42, 114, 210, 60, 360, 720, 1320, 1590, 3690, 6450, 16110, 33120, 59940, 61320, 112980, 171780, 387240, 803880, 769440, 1773240, 2823240, 5790960, 9916200, 19502280, 28244160, 56881440, 130548600, 279578880, 320554080, 541323720
Offset: 0
The a(1) = 1 through a(8) = 12 compositions (empty column not shown):
(1) (12) (112) (122) (123) (1123) (1223)
(21) (121) (212) (132) (1132) (1232)
(211) (221) (213) (1213) (1322)
(231) (1231) (2123)
(312) (1312) (2132)
(321) (1321) (2213)
(2113) (2231)
(2131) (2312)
(2311) (2321)
(3112) (3122)
(3121) (3212)
(3211) (3221)
Looking at run-lengths instead of multiplicities gives
A329749.
The non-complete version is
A329741.
-
normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],normQ[#]&&normQ[Length/@Split[Sort[#]]]&]],{n,0,10}]
A333630
Least STC-number of a composition whose sequence of run-lengths has STC-number n.
Original entry on oeis.org
0, 1, 3, 5, 7, 14, 11, 13, 15, 30, 43, 29, 23, 46, 27, 45, 31, 62, 122, 61, 87, 117, 59, 118, 47, 94, 107, 93, 55, 110, 91, 109, 63, 126, 250, 125, 343, 245, 123, 246, 175, 350, 235, 349, 119, 238, 347, 237, 95, 190, 378, 189, 215, 373, 187, 374, 111, 222, 363
Offset: 0
The sequence together with the corresponding compositions begins:
0: ()
1: (1)
3: (1,1)
5: (2,1)
7: (1,1,1)
14: (1,1,2)
11: (2,1,1)
13: (1,2,1)
15: (1,1,1,1)
30: (1,1,1,2)
43: (2,2,1,1)
29: (1,1,2,1)
23: (2,1,1,1)
46: (2,1,1,2)
27: (1,2,1,1)
45: (2,1,2,1)
31: (1,1,1,1,1)
62: (1,1,1,1,2)
Position of first appearance of n in
A333627.
All of the following pertain to compositions in standard order (
A066099):
- Compositions without terms > 2 are
A003754.
- Compositions without ones are ranked by
A022340.
- The partial sums from the right are
A048793.
- Adjacent equal pairs are counted by
A124762.
- Equal runs are counted by
A124767.
- Strict compositions are ranked by
A233564.
- The partial sums from the left are
A272020.
- Constant compositions are ranked by
A272919.
- Normal compositions are ranked by
A333217.
- Anti-runs are counted by
A333381.
- Adjacent unequal pairs are counted by
A333382.
- First appearances of run-resistances are
A333629.
Cf.
A029931,
A098504,
A114994,
A225620,
A228351,
A238279,
A242882,
A318928,
A329744,
A329747,
A333489.
-
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
seq=Table[Total[2^(Accumulate[Reverse[Length/@Split[stc[n]]]])]/2,{n,0,1000}];
Table[Position[seq,i][[1,1]],{i,First[Split[Union[seq],#1+1==#2&]]}]-1
A003262
Let y=f(x) satisfy F(x,y)=0. a(n) is the number of terms in the expansion of (d/dx)^n y in terms of the partial derivatives of F.
Original entry on oeis.org
1, 3, 9, 24, 61, 145, 333, 732, 1565, 3247, 6583, 13047, 25379, 48477, 91159, 168883, 308736, 557335, 994638, 1755909, 3068960, 5313318, 9118049, 15516710, 26198568, 43904123, 73056724, 120750102, 198304922, 323685343
Offset: 1
(d/dx)^2 y = -F_xx/F_y + 2*F_x*F_xy/F_y^2 - F_x^2*F_yy/F_y^3, where F_x denotes partial derivative with respect to x, etc. This has three terms, thus a(2)=3.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 175.
- L. Comtet and M. Fiolet, Sur les dérivées successives d'une fonction implicite. C. R. Acad. Sci. Paris Ser. A 278 (1974), 249-251.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Robert G. Wilson v, Table of n, a(n) for n = 1..500
- L. Comtet, Letter to N. J. A. Sloane, Mar 1974.
- L. Comtet and M. Fiolet, Number of terms in an nth derivative, C. R. Acad. Sc. Paris, t. 278 (21 janvier 1974), Serie A- 249-251. (Annotated scanned copy)
- T. Wilde, Implicit higher derivatives and a formula of Comtet and Fiolet, arXiv:0805.2674 [math.CO], 2008.
Cf.
A172004 (generalization to bivariate implicit functions).
Cf.
A162326 (analogous sequence for implicit divided differences).
-
p[, ] = 0; q[, ] = 0; e = 30; For[m = 1, m <= e - 1, m++, For[d = 1, d <= m, d++, If[m == d*Floor[m/d], For[i = 0, i <= m/d + 1, i++, If[d*i <= e, q[m, i*d] = q[m, i*d] + 1/d]]]]]; For[j = 0, j <= e, j++, p[0, j] = 1]; For[n = 1, n <= e - 1, n++, For[s = 0, s <= n, s++, For[j = 0, j <= e, j++, For[i = 0, i <= j, i++, p[n, j] = p[n, j] + (1/n)*s*q[s, j - i]*p[n - s, i]]]]]; A003262 = Table[p[n - 1, n], {n, 1, e}](* Jean-François Alcover, after Tom Wilde *)
-
' Tom Wilde, Jan 19 2008
Sub Calc_AofN_upto_E()
E = 30
ReDim p(0 To E - 1, 0 To E)
ReDim q(0 To E - 1, 0 To E)
For m = 1 To E - 1
For d = 1 To m
If m = d * Int(m / d) Then
For i = 0 To m / d + 1
If d * i <= E Then q(m, i * d) = q(m, i * d) + 1 / d
Next
End If
Next
Next
For j = 0 To E
p(0, j) = 1
Next
For n = 1 To E - 1
For s = 0 To n
For j = 0 To E
For i = 0 To j
p(n, j) = p(n, j) + 1 / n * s * q(s, j - i) * p(n - s, i)
Next
Next
Next
Next
For n = 1 To E
Debug.Print p(n - 1, n)
Next
End Sub
More terms from Tom Wilde (tom(AT)beech84.fsnet.co.uk), Jan 19 2008
A329749
Number of complete compositions of n whose run-lengths cover an initial interval of positive integers.
Original entry on oeis.org
1, 1, 0, 2, 3, 5, 11, 23, 40, 80, 180, 344, 661, 1321, 2657, 5268, 10481, 20903, 41572, 82734, 164998, 328304, 654510, 1305421, 2598811, 5182174, 10332978, 20594318, 41066611, 81897091, 163309679, 325707492, 649648912, 1295827380, 2584941276, 5156774487
Offset: 0
The a(0) = 1 through a(6) = 11 compositions (empty column not shown):
() (1) (1,2) (1,1,2) (1,2,2) (1,2,3)
(2,1) (1,2,1) (2,1,2) (1,3,2)
(2,1,1) (2,2,1) (2,1,3)
(1,1,2,1) (2,3,1)
(1,2,1,1) (3,1,2)
(3,2,1)
(1,2,1,2)
(1,2,2,1)
(2,1,1,2)
(2,1,2,1)
(1,1,2,1,1)
Looking at multiplicities instead of run-lengths gives
A329748.
The non-complete version is
A329766.
-
normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],normQ[#]&&normQ[Length/@Split[#]]&]],{n,0,10}]
A329869
Number of compositions of n with runs-resistance equal to cuts-resistance minus 1.
Original entry on oeis.org
0, 1, 2, 1, 2, 1, 4, 5, 11, 19, 36, 77, 138, 252, 528, 1072, 2204, 4634, 9575, 19732, 40754
Offset: 0
The a(1) = 1 through a(9) = 19 compositions:
1 2 3 4 5 6 7 8 9
11 22 33 11113 44 11115
11112 31111 11114 12222
21111 111211 41111 22221
112111 111122 51111
111311 111222
113111 111411
211112 114111
221111 211113
1111121 222111
1211111 311112
1111131
1111221
1112112
1121112
1221111
1311111
2111211
2112111
For example, the runs-resistance of (1221111) is 3 because we have: (1221111) -> (124) -> (111) -> (3), while the cuts-resistance is 4 because we have: (1221111) -> (2111) -> (11) -> (1) -> (), so (1221111) is counted under a(9).
The version for binary indices is
A329866.
Compositions counted by runs-resistance are
A329744.
Compositions counted by cuts-resistance are
A329861.
Cf.
A003242,
A098504,
A114901,
A242882,
A318928,
A319411,
A319416,
A319420,
A319421,
A329864,
A329865,
A329867,
A329868.
-
runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1;
degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1;
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],runsres[#]+1==degdep[#]&]],{n,0,10}]
A325550
Number of necklace compositions of n with distinct multiplicities.
Original entry on oeis.org
1, 2, 2, 4, 5, 7, 11, 16, 18, 41, 86, 118, 273, 465, 731, 1432, 2791, 4063, 8429, 14761, 29465, 58654, 123799, 227419, 453229, 861909, 1697645, 3192807, 6315007, 11718879, 22795272, 42965245, 83615516, 156215020, 306561088, 587300503, 1140650287, 2203107028
Offset: 1
The a(1) = 1 through a(8) = 16 necklace compositions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (113) (33) (115) (44)
(112) (122) (114) (133) (116)
(1111) (1112) (222) (223) (224)
(11111) (1113) (1114) (233)
(11112) (1222) (1115)
(111111) (11113) (2222)
(11122) (11114)
(11212) (11222)
(111112) (12122)
(1111111) (111113)
(111122)
(111212)
(112112)
(1111112)
(11111111)
-
neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],neckQ[#]&&UnsameQ@@Length/@Split[Sort[#]]&]],{n,15}]
-
b(n)={((r,k,b,w)->if(!k||!r, if(r,0,(w-1)!), sum(m=0, r\k, if(!m || !bittest(b,m), self()(r-k*m, k-1, bitor(b,1<Andrew Howroyd, Aug 31 2019
Comments