cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A251540 Odd numbers k such that A098548(k) is not a multiple of 3.

Original entry on oeis.org

1, 493, 495, 497, 499, 1085, 1087, 1685, 1687, 2283, 2285, 2287, 2873, 2875, 3471, 3473, 4673, 4675, 5271, 5273, 5871, 5873, 6469, 6471, 7069, 7071, 7669, 7671, 8267, 8269, 8271, 8273, 8859, 8861, 9457, 9459
Offset: 1

Views

Author

N. J. A. Sloane, Dec 07 2014

Keywords

Crossrefs

Programs

  • Haskell
    a251540 n = a251540_list !! (n-1)
    a251540_list = filter ((> 0) . flip mod 3 . a098548) [1, 3 ..]
    -- Reinhard Zumkeller, Dec 08 2014

A098550 The Yellowstone permutation: a(n) = n if n <= 3, otherwise the smallest number not occurring earlier having at least one common factor with a(n-2), but none with a(n-1).

Original entry on oeis.org

1, 2, 3, 4, 9, 8, 15, 14, 5, 6, 25, 12, 35, 16, 7, 10, 21, 20, 27, 22, 39, 11, 13, 33, 26, 45, 28, 51, 32, 17, 18, 85, 24, 55, 34, 65, 36, 91, 30, 49, 38, 63, 19, 42, 95, 44, 57, 40, 69, 50, 23, 48, 115, 52, 75, 46, 81, 56, 87, 62, 29, 31, 58, 93, 64, 99, 68, 77, 54, 119, 60
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 14 2004

Keywords

Comments

For n > 3, gcd(a(n), a(n-1)) = 1 and gcd(a(n), a(n-2)) > 1. (This is just a restatement of the definition.)
This is now known to be a permutation of the natural numbers: see the 2015 article by Applegate, Havermann, Selcoe, Shevelev, Sloane, and Zumkeller.
From N. J. A. Sloane, Nov 28 2014: (Start)
Some of the known properties (but see the above-mentioned article for a fuller treatment):
1. The sequence is infinite. Proof: We can always take a(n) = a(n-2)*p, where p is a prime that is larger than any prime dividing a(1), ..., a(n-1). QED
2. At least one-third of the terms are composite. Proof: The sequence cannot contain three consecutive primes. So at least one term in three is composite. QED
3. For any prime p, there is a term that is divisible by p. Proof: Suppose not. (i) No prime q > p can divide any term. For if a(n)=kq is the first multiple of q to appear, then we could have used kp < kq instead, a contradiction. So every term a(n) is a product of primes < p. (ii) Choose N such that a(n) > p^2 for all n > N. For n > N, let a(n)=bg, a(n+1)=c, a(n+2)=dg, where g=gcd(a(n),a(n+2)). Let q be the largest prime factor of g. We know q < p, so qp < p^2 < dg, so we could have used qp instead of dg, a contradiction. QED
3a. Let a(n_p) be the first term that is divisible by p (this is A251541). Then a(n_p) = q*p where q is a prime less than p. If p < r are primes then n_p < n_r. Proof: Immediate consequences of the definition.
4. (From David Applegate, Nov 27 2014) There are infinitely many even terms. Proof:
Suppose not. Then let 2x be the maximum even entry. Because the sequence is infinite, there exists an N such that for any n > N, a(n) is odd, and a(n) > x^2.
In addition, there must be some n > N such that a(n) < a(n+2). For that n, let g = gcd(a(n),a(n+2)), a(n) = bg, a(n+1)=c, a(n+2)=dg, with all of b,c,d,g relatively prime, and odd.
Since dg > bg, d > b >= 1, so d >= 3. Also, g >= 3.
Since a(n) = bg > x^2, one of b or g is > x.
Case 1: b > x. Then 2b > 2x, so 2b has not yet occurred in the sequence. And gcd(bg,2b)=b > x > 1, gcd(2b,c)=1, and since g >= 3, 2b < bg < dg. So a(n+2) should have been 2b instead of dg.
Case 2: g > x. Then 2g > 2x, so 2g has not yet occurred in the sequence. And gcd(bg,2g)=g > 1, gcd(2g,c)=1, and since d >= 3, 2g < dg. So a(n+2) should have been 2g instead of dg.
In either case, we derive a contradiction. QED
Conjectures:
5. For any prime p > 97, the first time we see p, it is in the subsequence a(n) = 2b, a(n+2) = 2p, a(n+4) = p for some n, b, where n is about 2.14*p and gcd(b,p)=1.
6. The value of |{k=1,..,n: a(k)<=k}|/n tends to 1/2. - Jon Perry, Nov 22 2014 [Comment edited by N. J. A. Sloane, Nov 23 2014 and Dec 26 2014]
7. Based on the first 250000 terms, I conjectured on Nov 30 2014 that a(n)/n <= (Pi/2)*log n.
8. The primes in the sequence appear in their natural order. This conjecture is very plausible but as yet there is no proof. - N. J. A. Sloane, Jan 29 2015
(End)
The only fixed points seem to be {1, 2, 3, 4, 12, 50, 86} - see A251411. Checked up to n=10^4. - L. Edson Jeffery, Nov 30 2014. No further terms up to 10^5 - M. F. Hasler, Dec 01 2014; up to 250000 - Reinhard Zumkeller; up to 300000 (see graph) - Hans Havermann, Dec 01 2014; up to 10^6 - Chai Wah Wu, Dec 06 2014; up to 10^8 - David Applegate, Dec 08 2014.
From N. J. A. Sloane, Dec 04 2014: (Start)
The first 250000 points lie on about 8 roughly straight lines, whose slopes are approximately 0.467, 0.957, 1.15, 1.43, 2.40, 3.38, 5.25 and 6.20.
The first six lines seem well-established, but the two lines with highest slope at present are rather sparse. Presumably as the number of points increases, there will be more and more lines of ever-increasing slopes.
These lines can be seen in the Havermann link. See the "slopes" link for a list of the first 250000 terms sorted according to slope (the four columns in the table give n, a(n), the slope a(n)/n, and the number of divisors of a(n), respectively).
The primes (with two divisors) all lie on the lowest line, and the lines of slopes 1.43 and higher essentially consist of the products of two primes (with four divisors).
(End)
The eight roughly straight lines mentioned above are actually curves. A good fit for the "line" with slope ~= 1.15 is a(n)~=n(1+1.0/log(n/24.2)), and a good fit for the other "lines" is a(n)~= (c/2)*n(1-0.5/log(n/3.67)), for c = 1,2,3,5,7,11,13. The first of these curves consists of most of the odd terms in the sequence. The second family consists of the primes (c=1), even terms (c=2), and c*prime (c=3,5,7,11,13,...). This functional form for the fit is motivated by the observed pattern (after the first 204 terms) of alternating even and odd terms, except for the sequence pattern 2*p, odd, p, even, q*p when reaching a prime (with q a prime < p). - Jon E. Schoenfield and David Applegate, Dec 15 2014
For a generalization, see the sequence of monomials of primes in the comment in A247225. - Vladimir Shevelev, Jan 19 2015
From Vladimir Shevelev, Feb 24 2015: (Start)
Let P be prime. Denote by S_P*P the first multiple of P appearing in the sequence. Then
1) For P >= 5, S_P is prime.
Indeed, let
a(n-2)=v, a(n-1)=w, a(n)=S_P*P. (*)
Note that gcd(v,P)=1. Therefore, by the definition of the sequence, S_P*P should be the smallest number such that gcd(v,S_P) > 1.
So S_P is the smallest prime factor of v.
2) The first multiples of all primes appear in the natural order.
Suppose not. Then there is a pair of primes P < Q such that S_Q*Q appears earlier than S_P*P. Let
a(m-2)=v_1, a(m-1)=w_1, a(m)=S_Q*Q. (**)
Then, as in (*), S_Q is the smallest prime factor of v_1. But this does not depend on Q. So S_Q*P is a smaller candidate in (**), a contradiction.
3) S_P < P.
Indeed, from (*) it follows that the first multiple of S_P appears earlier than the first multiple of P. So, by 2), S_P < P.
(End)
For any given set S of primes, the subsequence consisting of numbers whose prime factors are exactly the primes in S appears in increasing order. For example, if S = {2,3}, 6 appears first, in due course followed by 12, 18, 24, 36, 48, 54, 72, etc. The smallest numbers in each subsequence (i.e., those that appear first) are the squarefree numbers A005117(n), n > 1. - Bob Selcoe, Mar 06 2015

Crossrefs

Cf. A098548, A098551, A249943 (first time all 1..n appear), A251553.
The inverse permutation is in A098551.
A098552(n) = a(a(n)).
A251102(n) = GCD(a(n+2),a(n)).
Cf. A251101 (smallest prime factor), A251103 (largest prime factor), A251138 (number of distinct prime factors), A251140 (total number of prime factors), A251045 (squarefree part), A251089 (squarefree kernel), A250127 and A251415 (records for a(n)/n), A251411 (fixed points), A248647 (records).
Cf. also A251412 (trajectory of 11), A251556 (finite cycles), A251413 and A251414 (variant involving odd numbers), A249357 ("Fibonacci" variant).
Smallest missing numbers: A251416, A251417, A251546-A251552, A247253. See also A251557, A241558, A251559.
Indices of some pertinent subsequences: A251237 (even numbers), A251238 (odd numbers), A251391 (squarefree), A251541 and A251239 (primes), A251240 (squares of primes), A251241 (prime powers), A251393 (powers of 2), A251392 (nonprimes), A253297 (primes p for which some multiple k*p > 2*p precedes p).
Three arrays concerning the occurrences of multiples of primes: A251637, A251715, A251716.
Two sequences related to the numbers which immediately follow a prime: A253048, A253049. Seven sequences related to the numbers that appear two steps after primes: A251542, A251543, A251544, A251545, A253052, A253053, A253054. See also A253055 and A253056.
Other starting values: A251554, A251555.
See also A064413 (EKG sequence), A255582, A121216 (similar sequences), A257112 (two-dimensional analog).
See also A253765 and A253766 (bisections), A250299 (parity), A253768 (partial sums).
See A336957 for a variation.

Programs

  • Haskell
    import Data.List (delete)
    a098550 n = a098550_list !! (n-1)
    a098550_list = 1 : 2 : 3 : f 2 3 [4..] where
       f u v ws = g ws where
         g (x:xs) = if gcd x u > 1 && gcd x v == 1
                       then x : f v x (delete x ws) else g xs
    -- Reinhard Zumkeller, Nov 21 2014
    
  • Maple
    N:= 10^4: # to get a(1) to a(n) where a(n+1) is the first term > N
    B:= Vector(N,datatype=integer[4]):
    for n from 1 to 3 do A[n]:= n: od:
    for n from 4 do
      for k from 4 to N do
        if B[k] = 0 and igcd(k,A[n-1]) = 1 and igcd(k,A[n-2]) > 1 then
           A[n]:= k;
           B[k]:= 1;
           break
        fi
      od:
      if k > N then break fi
    od:
    seq(A[i],i=1..n-1); # Robert Israel, Nov 21 2014
  • Mathematica
    f[lst_List] := Block[{k = 4}, While[ GCD[ lst[[-2]], k] == 1 || GCD[ lst[[-1]], k] > 1 || MemberQ[lst, k], k++]; Append[lst, k]]; Nest[f, {1, 2, 3}, 68] (* Robert G. Wilson v, Nov 21 2014 *)
    NN = Range[4, 1000]; a098550 = {1, 2, 3}; g = {-1}; While[g[[1]] != 0, g = Flatten[{FirstPosition[NN, v_ /; GCD[a098550[[-1]], v] == 1 && GCD[a098550[[-2]], v] > 1, 0]}]; If[g[[1]] != 0, d = NN[[g]]; a098550 = Flatten[Append[a098550, d[[1]]]]; NN = Delete[NN, g[[1]]]]]; Table[a098550[[n]], {n, 71}] (* L. Edson Jeffery, Jan 01 2015 *)
  • PARI
    a(n, show=1, a=3, o=2, u=[])={n<3&&return(n); show&&print1("1, 2"); for(i=4,n, show&&print1(","a); u=setunion(u, Set(a)); while(#u>1 && u[2]==u[1]+1, u=vecextract(u,"^1")); for(k=u[1]+1, 9e9, gcd(k,o)>1||next; setsearch(u,k)&&next; gcd(k,a)==1||next; o=a; a=k; break)); a} \\ Replace "show" by "a+1==i" in the main loop to print only fixed points. - M. F. Hasler, Dec 01 2014
    
  • Python
    from math import gcd
    A098550_list, l1, l2, s, b = [1,2,3], 3, 2, 4, {}
    for _ in range(1,10**6):
        i = s
        while True:
            if not i in b and gcd(i,l1) == 1 and gcd(i,l2) > 1:
                A098550_list.append(i)
                l2, l1, b[i] = l1, i, 1
                while s in b:
                    b.pop(s)
                    s += 1
                break
            i += 1 # Chai Wah Wu, Dec 04 2014

A336957 The Enots Wolley sequence: the lexicographically earliest infinite sequence {a(n)} of distinct positive numbers such that, for n>2, a(n) has a common factor with a(n-1) but not with a(n-2).

Original entry on oeis.org

1, 2, 6, 15, 35, 14, 12, 33, 55, 10, 18, 21, 77, 22, 20, 45, 39, 26, 28, 63, 51, 34, 38, 57, 69, 46, 40, 65, 91, 42, 30, 85, 119, 56, 24, 75, 95, 76, 36, 87, 145, 50, 44, 99, 93, 62, 52, 117, 105, 70, 58, 261, 111, 74, 68, 153, 123, 82, 80, 115, 161, 84, 60, 155, 217, 98, 48, 129, 215, 100
Offset: 1

Views

Author

Keywords

Comments

Suggested by the Yellowstone permutation A098550 except that now the key conditions in the definition have been reversed.
Let Ker(k), the kernel of k, denote the set of primes dividing k. Thus Ker(36) = {2,3}, Ker(1) = {}. Then Product_{p in Ker(k)} p = A000265(k), which is denoted by ker(k).
Theorem 1: For n>2, a(n) is the smallest number m not yet in the sequence such that
(i) Ker(m) intersect Ker(a(n-1)) is nonempty,
(ii) Ker(m) intersect Ker(a(n-2)) is empty, and
(iii) The set Ker(m) \ Ker(a(n-1)) is nonempty.
(Without condition (iii), every prime dividing m might also divide a(n-1), which would make it impossible to find a(n+1).)
Idea of proof: m always exists and is unique; no smaller choice for a(n) is possible; and taking a(n)=m does not lead to a contradiction. So a(n) must be m.
Theorem 2: For n>2, Ker(a(n)) contains at least two primes. (Immediate from Theorem 1, since a(n) must contain a prime in a(n-1) and a prime not in a(n-1).)
It follows that no odd prime p or even-or-odd prime power q^k, k>1, appears in the sequence. Obviously this sequence is not a permutation of the positive integers.
Theorem 3. For any M there is an n_0 such that n > n_0 implies a(n) > M. (This is a standard property of any sequence of distinct positive terms - see the Yellowstone paper).
Theorem 4. For any prime p, some term is divisible by p.
Proof. Take p=17 for concreteness. If 17 does not divide any term, then 19 cannot either (because the first time 19 appears, we could have used 17 instead).
So all terms are products only of 2,3,5,7,11,13. Go out a long way, use Theorem 2, and consider two huge successive terms, A*B, C*D, where Ker(B) = Ker(C) and Ker(A) intersect Ker(D) is empty. Either C or D must contain a huge prime power q^k, 2 <= q <= 13. If it is in C, replace it by q and multiply D by 17. If it is in D, replace it by 17. Either way we get a smaller legal candidate for C*D that is a multiple of 17. QED
Theorem 5. There are infinitely many even terms.
Proof. Suppose the prime p appears for the first times as a factor of a(n). Then we have a(n-1) = x*q^i, a(n) = q*p, where q

= 1. If q=2 then a(n) is even. So we may suppose q is odd. If x is odd then a(n+1) = 2*p. If x is even then obviously a(n-1) is even. So one of a(n-1), a(n), or a(n+1) is even for every prime p. So there are infinitely many even terms. QED - N. J. A. Sloane, Aug 28 2020

Theorem 6: For any prime p, infinitely many terms are divisible by p. - N. J. A. Sloane, Sep 09 2020. (I thought I had a proof that for any odd prime p, there is a term equal to 2p, but there was a gap in the argument. - N. J. A. Sloane, Sep 23 2020)
Theorem 7: There are infinitely many odd terms. - N. J. A. Sloane, Sep 12 2020
Conjecture 1: Every number with at least two distinct prime factors is in the sequence. In other words, apart from 1 and 2, this sequence is the complement of A000961.
[It seems very likely that the arguments used to prove Theorem 1 of the Yellowstone Permutation paper can be modified to prove the conjecture.]
The conditions permit us to start with a(1)=1, a(2)=2, and that does not lead to a contradiction, so those are the first two terms.
After 1, 2, the next term cannot be 4 or 5, but a(3) = 6 works.
For a(4), we can rule out 3, 4, 5, 7, 8, 9 11, 13 (powers of primes), and 10, 12, and 14 have a common factor with a(2). So a(4) = 15.
The graph of the first 100000 terms (see link) is similar to that of the Yellowstone permutation, but here the points lie on more lines.
The sequence has fixed points at n = 1, 2, 10, 90, 106, 150, 162, 246, 394, 398, 406, 410, ... (see A338050). - Scott R. Shannon, Aug 13 2020
The initial pattern of odd and even terms: (odd, even, even, odd), repeat, is misleading as it does not persist. (See A337644 for more about this point.)
Discussion of when primes first divide some term, from N. J. A. Sloane, Oct 21 2020: (Start)
When an odd prime p first divides a term of the Enots Wolley sequence (the present sequence), that term a(n) is equal to q*p where q
We conjecture that even if p is introduced by some prime q>2, 2*p appears later.
Sequence A337275 lists the index k such that a(k) = 2*prime(n), or -1 if 2*prime(n) is missing, and A338074 lists the indices k such that a(k) is twice a prime.
Comparison of those two sequences shows that they appear to be essentially identical (see the table in A337275).
The differences between the two sequences are caused by the fact that although normally if p and q are odd primes with p < q, then 2p precedes 2q, this is not true for the following primes: (7,5), (31,29), and (109, 113, 107), which appear in the order shown. We conjecture that these are the only exceptions.
Combining the above observations, we conjecture that for n >= 755 (at which point we have seen all the primes <= 367), every prime p is introduced by 2*p, and the terms 2*p appear in their natural order.
(End)

Crossrefs

A337007 and A337008 describe the overlap between successive terms.
See A337066 for when n appears, A337275 for when 2p appears, A337276 for when 2k appears, A337280 for when p first divides a term, A337644 for runs of three odd terms, A337645 & A338052 for smallest missing legal number, A337646 & A337647 for record high points, A338056 & A338057 for record high values for a(n)/n.
See A338053 & A338054 for the "early" terms.
Further properties of the present sequence are studied in A338062-A338071.
A338059 has the missing prime powers inserted (see also A338060, A338061).
See A338055, A338351 for variants.
A280864 is a different but very similar lexicographically earliest sequence.

Programs

  • Maple
    with(numtheory);
    N:= 10^4: # to get a(1) to a(n) where a(n+1) is the first term > N
    B:= Vector(N, datatype=integer[4]):
    for n from 1 to 2 do A[n]:= n: od:
    for n from 3 do
      for k from 3 to N do
        if B[k] = 0 and igcd(k, A[n-1]) > 1 and igcd(k, A[n-2]) = 1 then
              if nops(factorset(k) minus factorset(A[n-1])) > 0 then
           A[n]:= k;
           B[k]:= 1;
           break;
              fi;
        fi
      od:
      if k > N then break; fi;
    od:
    s1:=[seq(A[i], i=1..n-1)]; # N. J. A. Sloane, Sep 24 2020, based on Theorem 1 and Robert Israel's program for sequence A098550
  • Mathematica
    M = 1000;
    A[1] = 1; A[2] = 2;
    Clear[B]; B[_] = 0;
    For[n = 3, True, n++,
    For[k = 3, k <= M, k++,
    If[B[k] == 0 && GCD[k, A[n-1]] > 1 && GCD[k, A[n-2]] == 1, If[Length[ FactorInteger[k][[All, 1]] ~Complement~ FactorInteger[A[n-1]][[All, 1]]] > 0, A[n] = k; B[k] = 1; Break[]]]]; If[k > M, Break[]]];
    Array[A, n-1] (* Jean-François Alcover, Oct 20 2020, after Maple *)
  • Python
    from math import gcd
    from sympy import factorint
    from itertools import count, islice
    def agen(): # generator of terms
        a, seen, minan = [1, 2], {1, 2}, 3
        yield from a
        for n in count(3):
            an, fset = minan, set(factorint(a[-1]))
            while True:
                if an not in seen and gcd(an, a[-1])>1 and gcd(an, a[-2])==1:
                    if set(factorint(an)) - fset > set():
                        break
                an += 1
            a.append(an); seen.add(an); yield an
            while minan in seen: minan += 1
    print(list(islice(agen(), 70))) # Michael S. Branicky, Jan 22 2022

Extensions

Added "infinite" to definition. - N. J. A. Sloane, Sep 03 2020
Added Scott R. Shannon's name "Enots Wolley" (Yellowstone backwards) for this sequence to the definition, since that has been mentioned in several talks. - N. J. A. Sloane, Oct 11 2020

A158478 Number of colors needed to paint n sectors of a circle.

Original entry on oeis.org

0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2
Offset: 0

Views

Author

Jaume Oliver Lafont, Mar 20 2009

Keywords

Comments

No pair of adjacent sectors can have the same color.
For n > 0: smallest prime factor of A098548(n).
Decimal expansion of 61/4950. - Elmo R. Oliveira, May 05 2024

Crossrefs

Programs

  • Haskell
    a158478 n = if n < 4 then n else 2 + mod n 2
    a158478_list = [0..3] ++ cycle [2,3]
    -- Reinhard Zumkeller, Nov 30 2014
  • Mathematica
    Join[Range[0, 1], ConstantArray[{2, 3}, 20]] // Flatten (* Robert Price, Jun 15 2020 *)
  • PARI
    a(n)=if(n<4,n,2+n%2)
    

Formula

G.f.: x*(1+2*x+2*x^2)/(1-x^2).
E.g.f.: 2*cosh(x) + 3*sinh(x) - 2*(1 + x). - Stefano Spezia, Mar 24 2020
a(n) = a(n-2) for n > 3. - Elmo R. Oliveira, May 05 2024
a(n) = (n mod 2) + (2 mod (n+1)). - Aaron J Grech, Sep 02 2024

A251539 First differences of A251538.

Original entry on oeis.org

4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 2, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4
Offset: 1

Views

Author

N. J. A. Sloane, Dec 07 2014

Keywords

Comments

I would very much like to have a formula or recurrence for this sequence.

Crossrefs

Cf. A251767 (duplicates removed), A251768 (run lengths).

Programs

A251103 Largest prime factor of A098550(n).

Original entry on oeis.org

1, 2, 3, 2, 3, 2, 5, 7, 5, 3, 5, 3, 7, 2, 7, 5, 7, 5, 3, 11, 13, 11, 13, 11, 13, 5, 7, 17, 2, 17, 3, 17, 3, 11, 17, 13, 3, 13, 5, 7, 19, 7, 19, 7, 19, 11, 19, 5, 23, 5, 23, 3, 23, 13, 5, 23, 3, 7, 29, 31, 29, 31, 29, 31, 2, 11, 17, 11, 3, 17, 5, 19, 11, 23
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 30 2014

Keywords

Comments

a(n) = A006530(A098550(n)).

Crossrefs

Programs

  • Haskell
    a251103 = a006530 . fromIntegral . a098550

A251138 Number of distinct prime factors of A098550(n).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 1, 2, 2, 1, 3, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 1, 3, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 30 2014

Keywords

Comments

a(n) = A001221(A098550(n)).

Crossrefs

Programs

  • Haskell
    a251138 = a001221 . fromIntegral . a098550

A251140 Total number of prime factors of A098550(n).

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 2, 2, 1, 2, 2, 3, 2, 4, 1, 2, 2, 3, 3, 2, 2, 1, 1, 2, 2, 3, 3, 2, 5, 1, 3, 2, 4, 2, 2, 2, 4, 2, 3, 2, 2, 3, 1, 3, 2, 3, 2, 4, 2, 3, 1, 5, 2, 3, 3, 2, 4, 4, 2, 2, 1, 1, 2, 2, 6, 3, 3, 2, 4, 2, 4, 2, 3, 2, 5, 3, 2, 3, 1, 3, 2, 3, 3, 5, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 30 2014

Keywords

Comments

a(n) = A001222(A098550(n)).

Crossrefs

Programs

  • Haskell
    a251140 = a001222 . fromIntegral . a098550

A251767 Consecutive repeated terms removed from in A251539.

Original entry on oeis.org

4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 1, 2, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 1, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 1, 4, 3, 4, 3, 4, 2, 4, 3, 4, 3, 4, 3, 4, 1, 2, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 1, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 2, 4, 1, 4, 3
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 08 2014

Keywords

Crossrefs

Programs

A251768 Run lengths in A251539.

Original entry on oeis.org

7, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 4, 1, 8, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 2, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 2, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 3, 1, 8, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 10, 2, 10, 1, 10, 1, 10
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 08 2014

Keywords

Crossrefs

Programs

Previous Showing 11-20 of 20 results.