cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A100974 Integers that are Rhonda numbers to base 15.

Original entry on oeis.org

2392, 2472, 11468, 15873, 17424, 18126, 19152, 20079, 24388, 30758, 31150, 33004, 33550, 37925, 39483, 42550, 44714, 58870, 59605, 66950, 70182, 71485, 71709, 85557, 85848, 86241, 86591, 92150, 110334, 112671, 113300, 116270, 120414
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Nov 25 2004

Keywords

Comments

See A099542 for definition of Rhonda numbers and for some links.

Examples

			The product of the base 15 digits of 2392 is 10*9*7=630. The sum of the prime factors of 2392 is 3*2+13+23=42 and 630=15*42. So 2392 is a Rhonda number to base 15.
		

Crossrefs

Cf. Rhonda numbers to other bases: A100968 (base 4), A100969 (base 6), A100970 (base 8), A100973 (base 9), A099542 (base 10), A100971 (base 12), A100972 (base 14), A100975 (base 16), A255735 (base 18), A255732 (base 20), A255736 (base 30), A255731 (base 60).
Column k=8 of A291925.

Programs

  • Haskell
    a100974 n = a100974_list !! (n-1)
    a100974_list = filter (rhonda 15) $ iterate z 1 where
       z x = 1 + if r < 14 then x else 15 * z x' where (x', r) = divMod x 15
    -- Function rhonda as in A099542.
    -- Reinhard Zumkeller, Mar 07 2015

A255732 Rhonda numbers in vigesimal number system.

Original entry on oeis.org

1815, 11050, 15295, 21165, 22165, 30702, 34510, 34645, 42292, 44165, 52059, 53416, 65945, 78430, 80712, 84251, 84835, 86591, 112608, 146055, 148144, 156284, 175419, 178350, 194590, 200655, 201825, 202664, 204085, 209095, 209550, 211250, 212346, 212850
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 05 2015

Keywords

Comments

See A099542 for definition of Rhonda numbers and for more links.

Examples

			a(1) = 1815 = 4*20^2 + 10*20^1 + 15*20^0 = 3*5*11*11,
with 4 * 10 * 15 = 20 * (3+5+11+11) = 600;
a(10) = 44165 = 5*20^3 + 10*20^2 + 8*20^1 + 5*20^0 = 5*11*11*73,
with 5 * 10 * 8 * 5 = 20 * (5+11+11+73) = 2000.
		

Crossrefs

Cf. Rhonda numbers to other bases: A100968 (base 4), A100969 (base 6), A100970 (base 8), A100973 (base 9), A099542 (base 10), A100971 (base 12), A100972 (base 14), A100974 (base 15), A100975 (base 16), A255735 (base 18), A255736 (base 30), A255731 (base 60), see also A255872.
Column k=11 of A291925.

Programs

  • Haskell
    a255732 n = a255732_list !! (n-1)
    a255732_list = filter (rhonda 20) $ iterate z 1 where
       z x = 1 + if r < 29 then x else 30 * z x' where (x', r) = divMod x 30
    -- Function rhonda as in A099542.

A255735 Integers that are Rhonda numbers to base 18.

Original entry on oeis.org

1470, 3000, 8918, 17025, 19402, 20650, 21120, 22156, 26522, 36549, 38354, 43281, 46035, 48768, 54229, 54528, 56584, 58216, 58224, 62238, 68096, 68150, 73161, 74024, 74636, 87978, 94041, 114000, 124656, 132240, 133926, 135876, 153105, 153870, 156621, 159819
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 05 2015

Keywords

Comments

See A099542 for definition of Rhonda numbers and for more links.

Examples

			a(1) = 1470 = 4*18^2 + 9*18^1 + 12*18^0 = 2*3*5*7*7,
with 4 * 9 * 12 = 18 * (2+3+5+7+7) = 432;
a(10) = 36549 = 6*18^3 + 4*18^2 + 14*18^1 + 9*18^0 = 3*3*31*131,
with 6 * 4 * 14 * 9 = 18 * (3+3+31+131) = 3024.
		

Crossrefs

Cf. Rhonda numbers to other bases: A100968 (base 4), A100969 (base 6), A100970 (base 8), A100973 (base 9), A099542 (base 10), A100971 (base 12), A100972 (base 14), A100974 (base 15), A100975 (base 16), A255732 (base 20), A255736 (base 30), A255731 (base 60), A255872.
Column k=10 of A291925.

Programs

  • Haskell
    a255735 n = a255735_list !! (n-1)
    a255735_list = filter (rhonda 18) $ iterate z 1 where
       z x = 1 + if r < 17 then x else 18 * z x' where (x', r) = divMod x 18
    -- Function rhonda as in A099542.

A255736 Integers that are Rhonda numbers to base 30.

Original entry on oeis.org

3024, 3168, 5115, 5346, 5950, 6762, 7750, 7956, 8470, 9476, 9576, 9849, 10360, 11495, 13035, 13356, 16335, 22610, 22784, 23864, 37515, 38025, 40704, 40986, 49887, 52925, 59800, 60955, 61812, 67782, 68590, 74800, 78430, 85063, 90160, 90649, 90897, 91540
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 05 2015

Keywords

Comments

See A099542 for definition of Rhonda numbers and for more links.

Examples

			a(1) = 3024 = 3 * 30^2 + 10 * 30^1 + 24 * 30^0 = 2*2*2*2*3*3*3*7,
with 3 * 10 * 24 = 30 * (2+2+2+2+3+3+3+7) = 720;
a(10) = 9476 = 10 * 30^2 + 15 * 30^1 + 26 * 30^0 = 2*2*23*103,
with 10 * 15 * 26 = 30 * (2+2+23+103) = 3900.
		

Crossrefs

Cf. Rhonda numbers to other bases: A100968 (base 4), A100969 (base 6), A100970 (base 8), A100973 (base 9), A099542 (base 10), A100971 (base 12), A100972 (base 14), A100974 (base 15), A100975 (base 16), A255735 (base 18), A255732 (base 20), A255731 (base 60), see also A255872.
Column k=19 of A291925.

Programs

  • Haskell
    a255736 n = a255736_list !! (n-1)
    a255736_list = filter (rhonda 30) $ iterate z 1 where
       z x = 1 + if r < 29 then x else 30 * z x' where (x', r) = divMod x 30
    -- Function rhonda as in A099542.

A255731 Rhonda numbers in sexagesimal number system.

Original entry on oeis.org

3348, 3510, 6750, 17430, 18750, 18876, 18944, 19475, 20564, 21312, 26550, 28280, 37230, 38396, 43940, 48042, 77770, 88270, 91224, 97470, 108882, 111403, 120046, 123630, 181996, 182646, 235467, 253460, 260429, 264735, 278675, 289161, 295960, 296055, 306642
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 05 2015

Keywords

Comments

See A099542 for definition of Rhonda numbers and for more links.

Examples

			a(1) = 3348 = 55 * 60^1 + 48 * 60^0 = 2*2*3*3*3*31,
with 55 * 48 = 60 * (2+2+3+3+3+31) = 2640;
a(10) = 21312 = 5*60^2 + 55*60^1 + 12*60^0 = 2*2*2*2*2*2*3*3*37,
with 5 * 55 * 12 = 60 * (2+2+2+2+2+2+3+3+37) = 3300.
		

Crossrefs

Cf. Rhonda numbers to other bases: A100968 (base 4), A100969 (base 6), A100970 (base 8), A100973 (base 9), A099542 (base 10), A100971 (base 12), A100972 (base 14), A100974 (base 15), A100975 (base 16), A255735 (base 18), A255732 (base 20), A255736 (base 30).
Column k=42 of A291925.

Programs

  • Haskell
    a255731 n = a255731_list !! (n-1)
    a255731_list = filter (rhonda 60) $ iterate z 1 where
       z x = 1 + if r < 59 then x else 60 * z x' where (x', r) = divMod x 60
    -- Function rhonda as in A099542.

A255872 Smallest Rhonda number to base b = n-th composite number, A002808(n).

Original entry on oeis.org

10206, 855, 1836, 15540, 1568, 560, 11475, 2392, 1000, 1470, 1815, 1632, 2695, 2080, 6764, 7788, 4797, 3094, 3024, 1944, 756, 5661, 8232, 1000, 12296, 5824, 4624, 4851, 8262, 6561, 16583, 14616, 6545, 7225, 11310, 18382, 1995, 16896, 2940, 23465, 8464, 3348
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 08 2015

Keywords

Comments

See A099542 for definition of Rhonda numbers and for more links.

Examples

			.   n |  b |  a(n)              |  a(n) in base b | factorization
. ----+----+--------------------+-----------------+--------------
.   1 |  4 | 10206 = A100968(1) | [2,1,3,3,1,3,2] | 2*3^6*7
.   2 |  6 |   855 = A100969(1) |       [3,5,4,3] | 3^2*5*19
.   3 |  8 |  1836 = A100970(1) |       [3,4,5,4] | 2^2*3^3*17
.   4 |  9 | 15540 = A100973(1) |     [2,3,2,7,6] | 2^2*3*5*7*37
.   5 | 10 |  1568 = A099542(1) |       [1,5,6,8] | 2^5*7^2
.   6 | 12 |   560 = A100971(1) |        [3,10,8] | 2^4*5*7
.   7 | 14 | 11475 = A100972(1) |       [4,2,7,9] | 3^3*5^2*17
.   8 | 15 |  2392 = A100974(1) |        [10,9,7] | 2^3*13*23
.   9 | 16 |  1000 = A100975(1) |        [3,14,8] | 2^3*5^3
.  10 | 18 |  1470 = A255735(1) |        [4,9,12] | 2*3*5*7^2
.  11 | 20 |  1815 = A255732(1) |       [4,10,15] | 3*5*11^2
.  12 | 21 |  1632              |       [3,14,15] | 2^5*3*17
.  13 | 22 |  2695              |       [5,12,11] | 5*7^2*11
.  14 | 24 |  2080              |       [3,14,16] | 2^5*5*13
.  15 | 25 |  6764              |      [10,20,14] | 2^2*19*89
.  16 | 26 |  7788              |      [11,13,14] | 2^2*3*11*59
.  17 | 27 |  4797              |       [6,15,18] | 3^2*13*41
.  18 | 28 |  3094              |       [3,26,14] | 2*7*13*17
.  19 | 30 |  3024 = A255736(1) |       [3,10,24] | 2^4*3^3*7
.  20 | 32 |  1944              |       [1,28,24] | 2^3*3^5
		

Crossrefs

Programs

  • Haskell
    a255872 n = head $ filter (rhonda b) $ iterate zeroless 1 where
                -- function rhonda as defined in A099542
                zeroless x = 1 + if r < b - 1 then x else b * zeroless x'
                             where (x', r) = divMod x b
                b = a002808 n

A255880 a(n) = n-th Rhonda number to base b = n-th composite number, cf. A002808.

Original entry on oeis.org

10206, 1029, 6622, 44360, 5439, 4888, 58404, 20079, 26296, 36549, 52059, 61376, 131427, 29106, 165504, 137007, 63525, 61115, 22784, 135705, 658896, 563159, 208369, 115506, 1078784, 228436, 152308, 185571, 539213, 152532, 2289001, 193963, 2499742, 298768
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 10 2015

Keywords

Comments

See A099542 for definition of Rhonda numbers and for more links.

Examples

			Diagonalization of Rhonda numbers to base b = A002808(n), n = 1 .. 8:
.   b | n\n              1      2     3      4      5     6      7      8
. ----+---+---------------------------------------------------------------
.   4 | 1 | A100968 [10206] 11935 12150  16031  45030 94185 113022 114415
.   6 | 2 | A100969    855  [1029] 3813   5577   7040  7304  15104  19136
.   8 | 3 | A100970   1836   6318 [6622] 10530  14500 14739  17655  18550
.   9 | 4 | A100973  15540  21054 25331 [44360] 44660 44733  47652  50560
.  10 | 5 | A099542   1568   2835  4752   5265  [5439] 5664   5824   5832
.  12 | 6 | A100971    560    800  3993   4425   4602 [4888]  7315   8296
.  14 | 7 | A100972  11475  18655 20565  29631  31725 45387 [58404] 58667
.  15 | 8 | A100974   2392   2472 11468  15873  17424 18126  19152 [20079]
		

Crossrefs

Programs

  • Haskell
    a255880 n = (filter (rhonda b) $ iterate zeroless 1) !! (n - 1) where
                -- function rhonda as defined in A099542
                zeroless x = 1 + if r < b - 1 then x else b * zeroless x'
                             where (x', r) = divMod x b
                b = a002808 n
  • Mathematica
    nc = 34; (* number of composite bases *)
    compos = Select[Range[FindRoot[n == nc + PrimePi[n] + 1, {n, nc, 2nc}][[1, 2]] // Floor], CompositeQ];
    RhondaQ[n_, b_] := Times @@ IntegerDigits[n, b] == b Total[Times @@@ FactorInteger[n]];
    a[n_] := a[n] = Module[{b = compos[[n]], cnt = 0, k}, For[k = 1, True, k++, If[RhondaQ[k, b], cnt++; If[cnt == n, Return[k]]]]];
    Table[Print[n, " ", a[n]]; a[n], {n, 1, nc}] (* Jean-François Alcover, Nov 15 2021 *)

A100987 Integers that are Rhonda numbers to some base.

Original entry on oeis.org

560, 756, 800, 855, 1000, 1029, 1134, 1470, 1568, 1632, 1750, 1815, 1836, 1944, 1995, 2080, 2100, 2392, 2472, 2662, 2695, 2709, 2835, 2940, 3000, 3024, 3060, 3087, 3094, 3168, 3240, 3264, 3348, 3456, 3510, 3600, 3672, 3675, 3744, 3750, 3813, 3888, 3952, 3976
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Nov 25 2004

Keywords

Comments

See sequence A099542 for definition of Rhonda numbers and for some links.

Examples

			560 is a Rhonda number to base 12. 756 is a Rhonda number to base 33. 800 is a Rhonda number to base 12 etc. No integer smaller than 560 is a Rhonda number and there exists no Rhonda number between 560 and 756.
		

Crossrefs

Cf. A099542 for definition of Rhonda numbers. A100968-A100975 for Rhonda numbers for specific bases.
Cf. A291925.

Extensions

Offset changed to 1 by Alois P. Heinz, Sep 09 2017

A100988 Integers that are Rhonda numbers to more than one base.

Original entry on oeis.org

1000, 2940, 4200, 4212, 4725, 5670, 5824, 5832, 6776, 6864, 7040, 7140, 8296, 9476, 9633, 10200, 11016, 11050, 11160, 11495, 11935, 12393, 12474, 13068, 13260, 13671, 14014, 14322, 14406, 15680, 15750, 15912, 16240, 16821, 17056, 17820, 18270, 18655, 18700
Offset: 1

Views

Author

Mark Hudson (mrmarkhudson(AT)hotmail.com), Nov 25 2004

Keywords

Comments

See A099542 for definition of Rhonda numbers and for some links.

Examples

			1000 is a Rhonda number to bases 16 and 36. 2940 is a Rhonda number to bases 56 and 76. 5670 is a Rhonda number to bases 36, 106, 108 and 196.
		

Crossrefs

Cf. A099542 for definition of Rhonda numbers. A100968 to A100975 for Rhonda numbers to specific bases. A100987 for integers that are Rhonda numbers to some base.
Cf. A291925.

Extensions

New offset and terms a(12)-a(39) from Alois P. Heinz, Sep 09 2017

A217986 The smallest k that is a Rhonda number in exactly n bases.

Original entry on oeis.org

560, 1000, 10200, 5670, 63945, 158400, 322920, 140800, 1200420, 889200, 792064, 4706352, 6331446, 12042800, 1000350, 8429960, 101892288, 129600900, 365575680, 340692480, 264269250, 304646400, 511999488, 118857024
Offset: 1

Views

Author

Giovanni Resta, Oct 17 2012

Keywords

Comments

n is a Rhonda number in base B if the product of its digits in base B is equal to B times the sum of its prime factors (with multiplicity).

Examples

			a(3)=10200 since 10200=2^3*3*5^2*17, so sopf=36. Its representations in bases 130,174, and 238 are (78,60)_130, (58,108)_174 and (42, 204)_238.
Finally, we have 78*60=130*36, 58*108=174*36, 42*204=238*36 and no smaller number is a Rhonda number w.r.t. exactly 3 bases.
a(24)=118857024 is a Rhonda number in bases {65412, 73593, 97020, 111176, 138996, 190125, 215644, 239057, 250120, 312576, 329004, 354497, 451308, 465426, 544128, 562104, 640692, 778752, 888888, 930402, 1026168, 1101672, 1165944, 1213082}.
		

Crossrefs

Cf. A099542 (for more links), A100987.
Previous Showing 11-20 of 21 results. Next