cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A103716 Numerators of sum_{k=1..n} 1/k^10 =: Zeta(10,n).

Original entry on oeis.org

1, 1025, 60526249, 61978938025, 605263128567754849, 605263138567754849, 170971856382109814342232401, 175075181098169912564190119249, 10338014371627802833957102351534201, 413520574906423083987893722912609
Offset: 1

Views

Author

Wolfdieter Lang, Feb 15 2005

Keywords

Comments

a(n) gives the partial sums, Zeta(10,n), of Euler's Zeta(10). Zeta(k,n) is also called H(k,n) because for k=1 these are the harmonic numbers H(n) = A001008/A002805.
For the denominators see A103717 and for the rationals Zeta(10,n) see the W. Lang link under A103345.

Crossrefs

Programs

Formula

a(n) = numerator(sum_{k=1..n} 1/k^10).
G.f. for rationals Zeta(10, n): polylogarithm(10, x)/(1-x).

A125503 Smallest number k such that the numerator of the generalized harmonic number H(k,n) = Sum_{i=1..k} 1/i^n is a prime.

Original entry on oeis.org

2, 2, 3, 2, 23, 73, 15, 2, 3, 5, 13, 57, 3, 171, 5, 2, 21, 7, 55, 8902, 26, 1298, 115, 139, 3, 2019, 3, 4, 3, 15, 56, 177
Offset: 1

Views

Author

Alexander Adamchuk, Dec 28 2006, Jan 31 2007

Keywords

Comments

a(n) = 2 for n = {1,2,4,8,16,...}. Corresponding Fermat primes A019434.
a(n) = 3 for n = {3,9,13,25,27,29,95,107,153,159,...}.
a(n) = 5 for n = {10,15,60,90,197,209,...}.
a(n) = 7 for n = {18,47,112,155,273,...}.
a(n) = 15 for n = {7,30,43,...}.
a(21) = 26. a(28) = 4. a(31) = 56. a(144) = 9.
From Alexander Adamchuk, Apr 18 2010: (Start)
a(22)-a(25) = {1298,115,139,3}.
a(27)-a(32) = {3,4,3,15,56,177}.
a(n) = 3 for all n>2 listed in A125706. (End)
a(26) = 2019. - Alexander Adamchuk, Apr 26 2010
a(20) > 3000. - Michael S. Branicky, Jun 25 2022

Crossrefs

Programs

  • Mathematica
    Do[n = 1; f = 0; While[Not[PrimeQ[Numerator[f]]], f = f + 1/n^x; n++ ]; Print[{x, n - 1}], {x, 1, 25}] (* Alexander Adamchuk, Apr 18 2010 *)
  • PARI
    a(n) = my(k=1); while (!ispseudoprime(numerator(sum(i=1, k, 1/i^n))), k++); k; \\ Michel Marcus, Jun 04 2022
    
  • Python
    from sympy import isprime
    from fractions import Fraction
    def a(n):
        Hkn, k = Fraction(1, 1), 1
        while not isprime(Hkn.numerator):
            k += 1
            Hkn += Fraction(1, k**n)
        return k
    print([a(n) for n in range(1, 20)]) # Michael S. Branicky, Jun 11 2022

Extensions

a(22)-a(25) from Alexander Adamchuk, Apr 18 2010
a(26)-a(32) from Alexander Adamchuk, Apr 26 2010
Incorrect a(20) removed by Michael S. Branicky, Jun 25 2022
a(20) = 8902 from Michael S. Branicky, Jun 12 2023

A322265 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = numerator of Sum_{j=1..n} 1/j^k.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 5, 11, 4, 1, 9, 49, 25, 5, 1, 17, 251, 205, 137, 6, 1, 33, 1393, 2035, 5269, 49, 7, 1, 65, 8051, 22369, 256103, 5369, 363, 8, 1, 129, 47449, 257875, 14001361, 28567, 266681, 761, 9, 1, 257, 282251, 3037465, 806108207, 14011361, 9822481, 1077749, 7129, 10
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 01 2018

Keywords

Examples

			Square array begins:
  1,       1,          1,              1,                  1,  ...
  2,     3/2,        5/4,            9/8,              17/16,  ...
  3,    11/6,      49/36,        251/216,          1393/1296,  ...
  4,   25/12,    205/144,      2035/1728,        22369/20736,  ...
  5,  137/60,  5269/3600,  256103/216000,  14001361/12960000,  ...
		

Crossrefs

Denominators are in A322266.

Programs

  • Mathematica
    Table[Function[k, Numerator[Sum[1/j^k, {j, 1, n}]]][i - n], {i, 0, 10}, {n, 1, i}] // Flatten
    Table[Function[k, Numerator[HarmonicNumber[n, k]]][i - n], {i, 0, 10}, {n, 1, i}] // Flatten
    Table[Function[k, Numerator[SeriesCoefficient[PolyLog[k, x]/(1 - x), {x, 0, n}]]][i - n], {i, 0, 10}, {n, 1, i}] // Flatten

Formula

G.f. of column k: PolyLog(k,x)/(1 - x), where PolyLog() is the polylogarithm function (for rationals Sum_{j=1..n} 1/j^k).
Previous Showing 21-23 of 23 results.