cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A195056 Decimal expansion of Pi^2/7.

Original entry on oeis.org

1, 4, 0, 9, 9, 4, 3, 4, 8, 5, 8, 6, 9, 9, 0, 8, 3, 7, 4, 1, 1, 9, 2, 1, 2, 9, 9, 9, 9, 8, 2, 3, 0, 7, 3, 0, 5, 0, 4, 4, 8, 1, 4, 2, 0, 1, 0, 3, 4, 3, 9, 8, 6, 6, 0, 9, 1, 6, 1, 9, 2, 7, 6, 8, 0, 3, 1, 4, 3, 4, 9, 7, 4, 6, 3, 1, 3, 1, 5, 0, 3, 4, 7, 1, 4, 5, 3, 9, 0, 5, 7, 6, 7, 4, 0, 7, 8, 8, 9, 0, 2, 6, 0, 5, 7
Offset: 1

Views

Author

Omar E. Pol, Oct 04 2011

Keywords

Examples

			1.409943485869908374119212999982307305045...
		

References

  • F. Aubonnet, D. Guinin and B.Joppin, Précis de Mathématiques, Analyse 2, Classes Préparatoires, Premier Cycle Universitaire, Bréal, 1990, Exercice 908, pages 82 and 91-92.

Crossrefs

Programs

  • Magma
    Pi(RealField(128))^2/7; // G. C. Greubel, Jun 02 2021
    
  • Mathematica
    RealDigits[Pi^2/7, 10, 105][[1]] (* T. D. Noe, Oct 05 2011 *)
  • PARI
    Pi^2/7 \\ Michel Marcus, Feb 04 2022
  • Sage
    numerical_approx(pi^2/7, digits=128) # G. C. Greubel, Jun 02 2021
    

Formula

Equals Sum_{k>=1} A000265(k)/k^3. - Amiram Eldar, Jun 27 2020
Equals Integral_{x=0..1} log(1+x+x^2+x^3+x^4+x^5+x^6)/x dx (Aubonnet). - Bernard Schott, Feb 04 2022

Extensions

Extended by T. D. Noe, Oct 05 2011

A195057 Decimal expansion of Pi^2/11.

Original entry on oeis.org

8, 9, 7, 2, 3, 6, 7, 6, 3, 7, 3, 5, 3, 9, 6, 2, 3, 8, 0, 7, 5, 8, 6, 2, 8, 1, 8, 1, 7, 0, 5, 5, 9, 1, 9, 4, 1, 1, 9, 4, 2, 7, 2, 1, 8, 8, 4, 0, 0, 7, 1, 8, 7, 5, 1, 2, 8, 4, 8, 6, 3, 0, 6, 9, 2, 9, 0, 9, 4, 9, 8, 3, 8, 5, 6, 2, 9, 1, 3, 8, 5, 7, 2, 7, 4, 3, 3, 9, 4, 5, 7, 9, 2, 5, 9, 5, 6, 5, 7, 4, 3, 8, 5, 4, 7
Offset: 0

Views

Author

Omar E. Pol, Oct 04 2011

Keywords

Examples

			0.8972367637353962380758628181705591941194...
		

Crossrefs

Programs

  • Magma
    Pi(RealField(129))^2/11; // G. C. Greubel, Jun 03 2021
    
  • Mathematica
    RealDigits[Pi^2/11, 10, 105][[1]] (* T. D. Noe, Oct 05 2011 *)
  • Sage
    numerical_approx(pi^2/11, digits=128) # G. C. Greubel, Jun 03 2021

Extensions

Extended by T. D. Noe, Oct 05 2011

A366442 The sum of divisors of the 5-rough numbers (A007310).

Original entry on oeis.org

1, 6, 8, 12, 14, 18, 20, 24, 31, 30, 32, 48, 38, 42, 44, 48, 57, 54, 72, 60, 62, 84, 68, 72, 74, 96, 80, 84, 108, 90, 112, 120, 98, 102, 104, 108, 110, 114, 144, 144, 133, 156, 128, 132, 160, 138, 140, 168, 180, 150, 152, 192, 158, 192, 164, 168, 183, 174, 248
Offset: 1

Views

Author

Amiram Eldar, Oct 10 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSigma[1, 2*Floor[3*n/2] - 1]; Array[a, 100]
  • PARI
    a(n) = sigma((3*n)\2 << 1 - 1)
    
  • Python
    from sympy import divisor_sigma
    def A366442(n): return divisor_sigma((n+(n>>1)<<1)-1) # Chai Wah Wu, Oct 10 2023

Formula

a(n) = A000203(A007310(n)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = zeta(2) = 1.644934... (A013661).
The asymptotic mean of the abundancy index of the 5-rough numbers: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A007310(k) = Pi^2/9 = 1.0966227... (A100044).
In general, the asymptotic mean of the abundancy index of the prime(k)-rough numbers is zeta(2) * Product_{i=1..k-1} (1 - 1/prime(i)^2).

A282496 'Somos expansion' of Pi: Pi=a(0)*sqrt(a(1)*sqrt(a(2)*sqrt(a(3)*sqrt(...)))). a(n)=floor(x(n)), x(n)=x(n-1)^2/a(n-1)^2, x(0)=Pi.

Original entry on oeis.org

3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 3, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 3, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 2, 2, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1
Offset: 0

Views

Author

Yuriy Sibirmovsky, Feb 16 2017

Keywords

Comments

1<=a(n)<=3 for all n. Reasoning: for x>1 it follows that 1

Examples

			Integer part of Pi is 3. Integer part of Pi^2/9 is 1.
		

Crossrefs

Cf. A000796 (digits), A100044 (Pi^2/9), A001203 (continued fraction), A276459 (another nested radical expansion).

Programs

  • Mathematica
    $MaxExtraPrecision = 1000;
    x00 = Pi;
    x0 = x00;
    Nm = 130;
    j = 1;
    Res = Table[1, {j, 1, Nm}];
    While[j < Nm, Res[[j]] = Floor[x0]; x0 = N[(x0/ Res[[j]])^2, 20000];
      j++];
    Res

Formula

Product_{k>=0} a(k)^(1/2^k) = Pi.

A373506 Decimal expansion of 4*Pi/3^(3/2) - Pi^2/9.

Original entry on oeis.org

1, 3, 2, 1, 7, 7, 6, 4, 4, 1, 0, 8, 0, 1, 3, 9, 5, 0, 9, 8, 1, 0, 4, 9, 4, 2, 3, 2, 4, 2, 5, 5, 2, 4, 1, 8, 3, 5, 6, 6, 1, 2, 1, 7, 2, 9, 9, 8, 5, 7, 8, 8, 4, 7, 5, 6, 0, 2, 8, 0, 7, 7, 6, 0, 9, 3, 7, 4, 9, 2, 5, 9, 4, 5, 6, 6, 3, 3, 7, 9, 2, 9, 0, 2, 3, 0, 8
Offset: 1

Author

R. J. Mathar, Jun 07 2024

Keywords

Examples

			1.321776441080139509810494232425524183566...
		

Crossrefs

Cf. A100044, A275486, A073016 (no n+1 denominator), A073010 (denominator n), A373507 (denominator n-1).

Programs

  • Maple
    4*Pi/3^(3/2)-Pi^2/9 ; evalf(%) ;
  • Mathematica
    RealDigits[4*Pi/3^(3/2) - Pi^2/9, 10, 120][[1]] (* Amiram Eldar, Jun 10 2024 *)
  • PARI
    4*Pi/3^(3/2) - Pi^2/9 \\ Amiram Eldar, Jun 10 2024

Formula

Equals Sum_{n>=0} 1/((n+1)*binomial(2n,n)).
The alternating case is Sum_{n>=0} (-1)^n/((n+1)*binomial(2*n,n)) = 8*log(phi)/sqrt(5)-4*log^2(phi) = 0.79537... where phi is the golden ratio.
Equals A275486 - A100044. - Stefano Spezia, Jun 07 2024

A373508 Decimal expansion of sqrt(3)*Pi/6 + Pi^2/36 - 1.

Original entry on oeis.org

1, 8, 1, 0, 5, 5, 3, 5, 9, 9, 2, 5, 1, 4, 6, 6, 6, 4, 7, 0, 9, 1, 0, 8, 3, 2, 3, 2, 6, 2, 0, 8, 2, 0, 6, 4, 3, 4, 5, 1, 9, 1, 4, 4, 0, 9, 1, 4, 1, 7, 0, 0, 2, 7, 4, 0, 7, 5, 3, 5, 5, 0, 5, 9, 2, 2, 3, 9, 6, 1, 6, 8, 9, 6, 3, 7, 1, 0, 4, 2, 0, 8, 1, 4
Offset: 0

Author

R. J. Mathar, Jun 07 2024

Keywords

Examples

			0.181055359925146664709108323262082...
		

Crossrefs

Cf. A093766, A100044, A373507 (denominator n-1), A073010 (denominator n).

Programs

  • Maple
    (sqrt(3)+Pi/6)*Pi/6-1; evalf(%) ;
  • Mathematica
    RealDigits[Sqrt[3]*Pi/6 + Pi^2/36 - 1, 10, 120][[1]] (* Amiram Eldar, Jun 10 2024 *)
  • PARI
    sqrt(3)*Pi/6 + Pi^2/36 - 1 \\ Amiram Eldar, Jun 10 2024

Formula

Equals Sum_{n>=2} 1/((n-1)^2*binomial(2n,n)).
Sum_{n>=2} (-1)^n/((n-1)^2*binomial(2n,n)) = 1 - sqrt(5)*log(phi) + log(phi)^2 = 0.1555... where phi is the golden ratio.
Equals A093766 + A100044/4 - 1. - Stefano Spezia, Jun 07 2024
Previous Showing 11-16 of 16 results.