cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-63 of 63 results.

A100182 Structured tetragonal anti-prism numbers.

Original entry on oeis.org

1, 8, 28, 68, 135, 236, 378, 568, 813, 1120, 1496, 1948, 2483, 3108, 3830, 4656, 5593, 6648, 7828, 9140, 10591, 12188, 13938, 15848, 17925, 20176, 22608, 25228, 28043, 31060, 34286, 37728, 41393, 45288, 49420, 53796, 58423, 63308, 68458, 73880, 79581, 85568, 91848, 98428, 105315, 112516
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com), Nov 07 2004

Keywords

Comments

If offset is changed to 0, this is the number of magic labelings of the 5-node, 8-edge graph formed from a square with both diagonals drawn and a node at the center [Stanley]. - N. J. A. Sloane, Jul 07 2014

Crossrefs

Cf. A100185 - structured anti-prisms; A100145 for more on structured numbers.

Programs

  • Magma
    [(1/6)*(7*n^3-3*n^2+2*n): n in [1..40]]; // Vincenzo Librandi, Aug 18 2011
    
  • Mathematica
    Table[(7*n^3 - 3*n^2 + 2*n)/6, {n,1,40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 8, 28, 68}, 40] (* G. C. Greubel, Nov 08 2018 *)
  • PARI
    vector(40, n, (7*n^3 -3*n^2 +2*n)/6) \\ G. C. Greubel, Nov 08 2018

Formula

a(n) = (1/6)*(7*n^3 - 3*n^2 + 2*n). [Corrected by Luca Colucci, Mar 01 2011]
G.f.: x*(1 + 4*x + 2*x^2)/(1-x)^4. - Colin Barker, Jun 08 2012
E.g.f.: (6*x +18*x^2 +7*x^3)*exp(x)/6. - G. C. Greubel, Nov 08 2018
a(n) = binomial(n,3) + n^3. - Pedro Caceres, Jul 28 2019

A100183 Structured hexagonal anti-prism numbers.

Original entry on oeis.org

1, 12, 46, 116, 235, 416, 672, 1016, 1461, 2020, 2706, 3532, 4511, 5656, 6980, 8496, 10217, 12156, 14326, 16740, 19411, 22352, 25576, 29096, 32925, 37076, 41562, 46396, 51591, 57160, 63116, 69472
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com), Nov 07 2004

Keywords

Crossrefs

Cf. A100185 - structured anti-prisms; A100145 for more on structured numbers.

Programs

  • Magma
    [(1/6)*(13*n^3-9*n^2+2*n): n in [1..40]]; // Vincenzo Librandi, Aug 18 2011
    
  • Mathematica
    Table[(13*n^3 - 9*n^2 + 2*n)/6, {n,1,40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 12, 46, 116}, 40] (* G. C. Greubel, Nov 08 2018 *)
  • PARI
    vector(40, n, (13*n^3 - 9*n^2 + 2*n)/6) \\ G. C. Greubel, Nov 08 2018

Formula

a(n) = (1/6)*(13*n^3 - 9*n^2 + 2*n). [Corrected by Luca Colucci, Mar 01 2011]
G.f.: x*(1 + 8*x + 4*x^2)/(1-x)^4. - Colin Barker, Jun 08 2012
E.g.f.: (6*x +30*x^2 +13*x^3)*exp(x)/6. - G. C. Greubel, Nov 08 2018

A100184 Structured octagonal anti-prism numbers.

Original entry on oeis.org

1, 16, 64, 164, 335, 596, 966, 1464, 2109, 2920, 3916, 5116, 6539, 8204, 10130, 12336, 14841, 17664, 20824, 24340, 28231, 32516, 37214, 42344, 47925, 53976, 60516, 67564, 75139, 83260, 91946, 101216, 111089, 121584, 132720, 144516, 156991, 170164, 184054, 198680
Offset: 1

Views

Author

James A. Record (james.record(AT)gmail.com), Nov 07 2004

Keywords

Crossrefs

Cf. A100185 (structured anti-prisms), A100145 (for more on structured numbers).

Programs

  • GAP
    List([1..33], n -> (1/6)*(19*n^3-15*n^2+2*n)); # Muniru A Asiru, Feb 14 2018
  • Magma
    [(1/6)*(19*n^3-15*n^2+2*n): n in [1..40]]; // Vincenzo Librandi, Aug 18 2011
    
  • Maple
    a:=n->(1/6)*(19*n^3-15*n^2+2*n): seq(a(n),n=1..33); # Muniru A Asiru, Feb 14 2018
  • Mathematica
    Rest@ CoefficientList[Series[x (1 + 12 x + 6 x^2)/(1 - x)^4, {x, 0, 32}], x] (* Michael De Vlieger, Feb 15 2018 *)

Formula

a(n) = (1/6)*(19*n^3-15*n^2+2*n). [Corrected by Luca Colucci, Mar 01 2011]
G.f.: x*(1 + 12*x + 6*x^2)/(1 - x)^4. - Colin Barker, Jun 08 2012
a(n) = Sum_{i = 0..n-1} (n + i)*(n + 2*i). - Bruno Berselli, Feb 14 2018
E.g.f.: exp(x)*x*(6 + 42*x + 19*x^2)/6. - Stefano Spezia, Oct 11 2023
Previous Showing 61-63 of 63 results.