cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 32 results. Next

A371749 Decimal expansion of Product_{k>=0} 1 / (1 + 1/4^k).

Original entry on oeis.org

3, 6, 8, 7, 5, 6, 1, 2, 7, 0, 7, 6, 9, 0, 0, 5, 6, 2, 7, 5, 0, 8, 4, 5, 6, 7, 2, 2, 8, 0, 8, 1, 9, 9, 1, 5, 4, 8, 2, 3, 4, 5, 1, 7, 9, 9, 3, 7, 7, 2, 5, 5, 6, 2, 1, 4, 5, 7, 1, 2, 5, 1, 8, 3, 4, 8, 2, 0, 1, 5, 2, 5, 6, 3, 3, 8, 8, 4, 1, 8, 4, 1, 2, 8, 9, 5, 9, 5, 4, 3, 5, 4, 4, 3, 4, 5, 0, 1, 1, 3
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 05 2024

Keywords

Examples

			0.368756127076900562750845672280819915482...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1/QPochhammer[-1, 1/4], 10, 100][[1]]

Formula

Equals A273413^2. - Hugo Pfoertner, Apr 05 2024

A001308 Order of Chevalley group D_n (2).

Original entry on oeis.org

1, 36, 20160, 174182400, 23499295948800, 50027557148216524800, 1691555775522928280469504000, 911666827031785075278550369566720000, 7846393898179181843651374899795632943267840000
Offset: 1

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Maple
    for m from 0 to 25 do N:=2^(m*(m-1))*mul( 4^i-1, i=1..m-1)*(2^m-1); lprint(N); od:
  • Mathematica
    d[q_, n_] := q^(n*(n-1)) * (q^n-1) * Product[q^(2*k) - 1, {k, 1, n-1}]; Table[d[2, n], {n, 1, 9}] (* Amiram Eldar, Jul 07 2025 *)

Formula

a(n) = 2^(n*(n-1)) * (2^n - 1) * Product_{i=1..n-1} (2^(2*i) - 1).
a(n) ~ c * 2^(n*(2*n-1)), where c = A100221. - Amiram Eldar, Jul 07 2025

A028666 a(n) = order of the orthogonal group O_n(2) if n is odd or O^(+)_n(2) if n is even.

Original entry on oeis.org

1, 12, 2880, 11612160, 758041804800, 794088208701849600, 13319336815141167562752000, 3575164027575627746190393606144000, 15354978274323252140217954794120612413440000, 1055182047088717407398960909148529544369642384916480000, 1160183823755957350394353874696058298158177597536388268425216000000
Offset: 0

Views

Author

Keywords

Comments

Pseudo-Galois numbers for d=4; order of group AGL(n,2^2).

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xii (but beware typos!).

Crossrefs

Programs

  • Maple
    f:=proc(n,eps) local m,d;
    if n mod 2 = 0 then m:=n/2; d:=gcd(4,2^m-eps);
    2^(m*(m-1))*mul( 4^i-1, i=1..m)*(2^m-eps)/d;
    else m:=(n-1)/2;
    2^(m^2)*mul( 4^i-1, i=1..m);
    fi; end;
    [seq(f(n,+1),n=0..20)]
  • Mathematica
    FoldList[ #1*4^#2 (4^#2-1)&, 1, Range[ 20 ] ]
    a[n_] := 4^n * Product[4^n - 4^k, {k, 0, n-1}]; Array[a, 10, 0] (* Amiram Eldar, Jul 14 2025 *)
  • PARI
    a(n) = 4^n * prod(k = 0, n-1, 4^n - 4^k); \\ Amiram Eldar, Jul 14 2025

Formula

a(n) = 4^n * Product_{k=0..n-1} (4^n - 4^k).
a(n) ~ c * 4^(n^2+n), where c = A100221. - Amiram Eldar, Jul 14 2025

Extensions

Entry revised by N. J. A. Sloane, Dec 30 2008
Duplicate term 1 removed by Amiram Eldar, Jul 14 2025

A330862 Decimal expansion of Product_{k>=1} (1 - 1/(-2)^k).

Original entry on oeis.org

1, 2, 1, 0, 7, 2, 4, 1, 3, 0, 3, 0, 1, 0, 5, 9, 1, 8, 0, 1, 3, 6, 1, 7, 2, 8, 5, 6, 1, 0, 5, 9, 0, 5, 0, 4, 6, 3, 6, 8, 0, 4, 1, 6, 3, 1, 1, 2, 3, 1, 3, 7, 6, 4, 3, 4, 7, 6, 1, 5, 9, 2, 4, 5, 5, 4, 0, 0, 0, 6, 8, 7, 5, 6, 5, 9, 1, 8, 4, 5, 0, 4, 9, 9, 1, 6, 5, 0, 7, 6, 1, 0, 1, 3, 3, 5, 5, 5, 3, 9, 5, 3, 9, 9, 6, 4, 6, 3, 3, 0, 9
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 28 2020

Keywords

Examples

			(1 + 1/2) * (1 - 1/2^2) * (1 + 1/2^3) * (1 - 1/2^4) * (1 + 1/2^5) * ... = 1.2107241303010591801361728561...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[QPochhammer[-1/2, -1/2], 10, 111] [[1]]
    N[QPochhammer[-2, 1/4]*QPochhammer[1/4]/3, 120] (* Vaclav Kotesovec, Apr 28 2020 *)
  • PARI
    prodinf(k=1, 1 - 1/(-2)^k) \\ Michel Marcus, Apr 28 2020

Formula

Equals Product_{k>=1} (4^k - 1)*(4^k + 2)/4^(2*k).
Equals exp(-Sum_{k>=1} A000203(k)/(k*(-2)^k)).

A371747 Decimal expansion of Product_{k>=1} 1 / (1 - 1/4^k).

Original entry on oeis.org

1, 4, 5, 2, 3, 5, 3, 6, 4, 2, 4, 4, 9, 5, 9, 7, 0, 1, 5, 8, 3, 4, 7, 1, 3, 0, 2, 2, 4, 8, 5, 2, 7, 4, 8, 7, 3, 3, 6, 1, 2, 2, 7, 9, 7, 8, 8, 0, 7, 9, 2, 6, 3, 4, 9, 6, 2, 5, 3, 8, 2, 7, 1, 8, 4, 0, 3, 6, 8, 6, 3, 0, 0, 7, 8, 1, 9, 4, 0, 3, 1, 6, 1, 0, 1, 4, 0, 7, 2, 0, 6, 0, 1, 5, 3, 6, 2, 1, 2, 9
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 05 2024

Keywords

Examples

			1.4523536424495970158347130224852748733612...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[1/QPochhammer[1/4, 1/4], 10, 100][[1]]

Formula

Equals 1 / A100221.

A371748 Decimal expansion of Product_{k>=0} (1 + 1/4^k).

Original entry on oeis.org

2, 7, 1, 1, 8, 1, 9, 3, 4, 7, 7, 2, 6, 9, 5, 8, 7, 6, 0, 6, 9, 1, 0, 8, 8, 4, 6, 9, 7, 0, 7, 9, 1, 8, 6, 0, 2, 4, 4, 3, 3, 9, 9, 0, 8, 5, 6, 7, 4, 8, 8, 5, 4, 9, 4, 6, 9, 3, 0, 8, 0, 6, 2, 9, 0, 0, 6, 0, 2, 6, 2, 3, 6, 1, 3, 0, 5, 9, 7, 7, 8, 0, 0, 9, 7, 8, 7, 7, 4, 0, 5, 2, 5, 2, 1, 4, 6, 0, 4, 6
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 05 2024

Keywords

Examples

			2.71181934772695876069108846970791860244...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[QPochhammer[-1, 1/4], 10, 100][[1]]

Formula

Equals A065445^2. - Hugo Pfoertner, Apr 05 2024

A092418 A sieve: starting with the sequence of positive integers, delete every 4th number, then delete every 16th number from the remaining sequence, then delete every 64th number, etc. Sequence gives the remaining numbers.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 43, 45, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 86, 87, 89, 91, 93, 94, 95, 97, 98, 99, 101, 102
Offset: 1

Views

Author

Charles T. Le (charlestle(AT)yahoo.com), Mar 22 2004

Keywords

Comments

The asymptotic density of this sequence is Product_{k>=1} (1 - 1/4^k) = 0.688537... (A100221). - Amiram Eldar, Mar 21 2021

References

  • C. Dumitrescu & V. Seleacu, editors, Some Notions and Questions in Number Theory, Vol. I, Erhus Publ., Glendale, 1994.
  • Florentin Smarandache, Properties of Numbers, 1972.

Crossrefs

Programs

  • MATLAB
    A = 1:200; A(4:4:end) = 0; A = A(find(A)); A(16:16:end) = 0; A = A(find(A)); A(64:64:end) = 0; A = A(find(A))
    % David Wasserman, Apr 28 2004

Extensions

Edited by David Wasserman, Apr 28 2004

A144546 A bisection of A028666.

Original entry on oeis.org

12, 11612160, 794088208701849600, 3575164027575627746190393606144000, 1055182047088717407398960909148529544369642384916480000, 20410164807073092317242309800149338693366138889849970301267088483593224192000000, 25872955740757748502626229629361173659982454517929458713719920139287952355803151825297413315474342543360000000
Offset: 0

Views

Author

N. J. A. Sloane, Dec 30 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 4^(2*n+1) * Product[4^(2*n+1) - 4^k, {k, 0, 2*n}]; Array[a, 7, 0] (* Amiram Eldar, Jul 14 2025 *)
  • PARI
    a(n) = 4^(2*n+1) * prod(k = 0, 2*n, 4^(2*n+1) - 4^k); \\ Amiram Eldar, Jul 14 2025

Formula

From Amiram Eldar, Jul 14 2025: (Start)
a(n) = A028666(2*n+1).
a(n) ~ c * 16^(2*n^2+3*n+1), where c = A100221. (End)

Extensions

a(0) = 1 removed by Amiram Eldar, Jul 14 2025

A144547 A bisection of A028666.

Original entry on oeis.org

1, 2880, 758041804800, 13319336815141167562752000, 15354978274323252140217954794120612413440000, 1160183823755957350394353874696058298158177597536388268425216000000, 5744950321305805807513301436668994962443746225944514592041927656983526026246267317780480000000, 1864342934383580231084517260259192252139946430124547822192277172067265954040486594733297802503864086641393952539593932800000000
Offset: 0

Views

Author

N. J. A. Sloane, Dec 30 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 16^n * Product[16^n - 4^k, {k, 0, 2*n-1}]; Array[a, 8, 0] (* Amiram Eldar, Jul 14 2025 *)
  • PARI
    a(n) = 16^n * prod(k = 0, 2*n-1, 16^n - 4^k); \\ Amiram Eldar, Jul 14 2025

Formula

From Amiram Eldar, Jul 14 2025: (Start)
a(n) = A028666(2*n).
a(n) ~ c * 16^(2*n^2+n), where c = A100221. (End)

A382979 a(n) = [(x*y)^n] Product_{k>=1} 1/(1 - x^k + y^k).

Original entry on oeis.org

1, -2, 4, -20, 78, -282, 1048, -4014, 15456, -59224, 227646, -879694, 3407730, -13219372, 51375286, -200021556, 779870542, -3044448644, 11898709560, -46553635346, 182315752476, -714619687038, 2803342734160, -11005274516610, 43233909672938, -169951684067602, 668474115081988
Offset: 0

Views

Author

Seiichi Manyama, Apr 11 2025

Keywords

Crossrefs

Main diagonal of A382974.

Programs

  • Magma
    nmax := 26; prec := 2*nmax + 10; Rx := PowerSeriesRing(Rationals(), prec); Rxy := PowerSeriesRing(Rx, prec); P := Rxy!1; for k in [1..prec] do P *:= 1/(1 - x^k + y^k); end for; seq := [Coefficient(Coefficient(P, n), n) : n in [0..nmax]]; print seq; // Vincenzo Librandi, Apr 12 2025
  • Mathematica
    a[n_]:=SeriesCoefficient[Product[1/(1-x^k+y^k),{k,1,n+5}],{x,0,n},{y,0,n}]; Table[a[n],{n,0,26}] (* Vincenzo Librandi, Apr 12 2025 *)

Formula

a(n) ~ (-1)^n * 4^n / (A100221 * sqrt(Pi*n)). - Vaclav Kotesovec, Apr 13 2025
Previous Showing 21-30 of 32 results. Next