cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A383098 Number of integer partitions of n having at least one permutation with all equal run-sums.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 7, 2, 7, 5, 7, 2, 19, 2, 7, 8, 14, 2, 27, 2, 24, 8, 7, 2, 58, 5, 7, 13, 30, 2, 72, 2, 38, 8, 7, 8, 135, 2, 7, 8, 91, 2, 112, 2, 45, 38, 7, 2, 258, 5, 51, 8, 54, 2, 208, 8, 143, 8, 7, 2, 525, 2, 7, 44, 153, 8, 256, 2, 75, 8, 136, 2, 891, 2, 7, 57, 87, 8
Offset: 0

Views

Author

Gus Wiseman, Apr 17 2025

Keywords

Examples

			The partition (4,4,4,2,2,1,1,1,1) has permutations (4,2,2,4,1,1,1,1,4) and (4,1,1,1,1,4,2,2,4) so is counted under a(20).
The a(1) = 1 through a(10) = 7 partitions (A=10):
  1  2   3    4     5      6       7        8         9          A
     11  111  22    11111  33      1111111  44        333        55
              211          222              422       33111      22222
              1111         2211             2222      3111111    511111
                           3111             41111     111111111  2221111
                           21111            221111               22111111
                           111111           11111111             1111111111
		

Crossrefs

For distinct instead of equal run-sums we appear to have A382427.
For run-lengths instead of sums we have A383013, ranked by complement of A382879.
The case of a unique choice is A383095, ranks A383099 = positions of 1 in A382877.
The complement is counted by A383096, ranks A383100 = positions of 0 in A382877.
These partitions are ranked by A383110.
The case of more than one choice is A383097, ranks A383015.
Counting and ranking partitions by run-lengths and run-sums:
- constant: A047966 (ranks A072774), sums A304442 (ranks A353833)
- distinct: A098859 (ranks A130091), sums A353837 (ranks A353838)
- weakly decreasing: A100882 (ranks A242031), sums A304405 (ranks A357875)
- weakly increasing: A100883 (ranks A304678), sums A304406 (ranks A357861)
- strictly decreasing: A100881 (ranks A304686), sums A304428 (ranks A357862)
- strictly increasing: A100471 (ranks A334965), sums A304430 (ranks A357864)
A275870 counts collapsible partitions, ranks A300273.
A326534 ranks multiset partitions with a common sum, counted by A321455, normal A326518.
A353851 counts compositions with all equal run-sums, ranks A353848.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Select[Permutations[#],SameQ@@Total/@Split[#]&]!={}&]],{n,0,15}]

Formula

a(n) = A383097(n) + A383095(n), ranks A383015 \/ A383099.

Extensions

More terms from Bert Dobbelaere, Apr 26 2025

A383094 Number of integer partitions of n having exactly one permutation with all equal run-lengths.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 5, 6, 9, 7, 11, 10, 13, 12, 17, 14, 21, 16, 21, 18, 27, 22, 29, 22, 34, 25, 35, 28, 41, 28, 43, 30, 48, 38, 47, 38, 55, 36, 53, 46, 64, 40, 67, 42, 69, 54, 65, 46, 84, 51, 75, 62, 83, 52, 86, 62, 94, 70, 83, 58, 111, 60, 89, 80, 106, 74, 115, 66, 111
Offset: 0

Views

Author

Gus Wiseman, Apr 20 2025

Keywords

Examples

			The partition (222211) has exactly one permutation with all equal run-lengths: (221122), so is counted under a(10).
The a(1) = 1 through a(8) = 9 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (221)    (33)      (322)      (44)
                    (211)   (311)    (222)     (331)      (332)
                    (1111)  (11111)  (411)     (511)      (422)
                                     (111111)  (22111)    (611)
                                               (1111111)  (2222)
                                                          (22211)
                                                          (221111)
                                                          (11111111)
		

Crossrefs

The complement is ranked by A382879 \/ A383089.
For no choices we have A382915, ranks A382879.
For at least one choice we have A383013, for run-sums A383098, ranks A383110.
For more than one choice we have A383090, ranks A383089.
For at most one choice we have A383092, ranks A383091.
For run-sums instead of lengths we have A383095, ranks A383099.
Partitions of this type are ranked by A383112 = positions of 1 in A382857.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A239455 counts Look-and-Say partitions, ranks A351294, conjugate A381432.
A329738 counts compositions with equal run-lengths, ranks A353744.
A329739 counts compositions with distinct run-lengths, ranks A351596, complement A351291.
A351293 counts non-Look-and-Say partitions, ranks A351295, conjugate A381433.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Length[Select[Permutations[#], SameQ@@Length/@Split[#]&]]==1&]],{n,0,20}]

Extensions

More terms from Bert Dobbelaere, Apr 26 2025

A383096 Number of integer partitions of n having no permutation with all equal run-sums.

Original entry on oeis.org

0, 0, 0, 1, 1, 5, 4, 13, 15, 25, 35, 54, 58, 99, 128, 168, 217, 295, 358, 488, 603, 784, 995, 1253, 1517, 1953, 2429, 2997, 3688, 4563, 5532, 6840, 8311, 10135, 12303, 14875, 17842, 21635, 26008, 31177, 37247, 44581, 53062, 63259, 75130, 89096, 105551, 124752, 147015, 173520
Offset: 0

Views

Author

Gus Wiseman, Apr 17 2025

Keywords

Examples

			The a(3) = 1 through a(8) = 15 partitions:
  (21)  (31)  (32)    (42)   (43)      (53)
              (41)    (51)   (52)      (62)
              (221)   (321)  (61)      (71)
              (311)   (411)  (322)     (332)
              (2111)         (331)     (431)
                             (421)     (521)
                             (511)     (611)
                             (2221)    (3221)
                             (3211)    (3311)
                             (4111)    (4211)
                             (22111)   (5111)
                             (31111)   (22211)
                             (211111)  (32111)
                                       (311111)
                                       (2111111)
		

Crossrefs

For distinct instead of equal run-sums we appear to have A381717, q.v.
For run-lengths instead of sums we have A382915, ranks A382879, by signature A382914.
For more than one permutation we have A383097, ranks A383015.
The complement is counted by A383098, ranks A383110
These partitions are ranked by A383100, positions of 0 in A382877.
Counting and ranking partitions by run-lengths and run-sums:
- constant: A047966 (ranks A072774), sums A304442 (ranks A353833)
- distinct: A098859 (ranks A130091), sums A353837 (ranks A353838)
- weakly decreasing: A100882 (ranks A242031), sums A304405 (ranks A357875)
- weakly increasing: A100883 (ranks A304678), sums A304406 (ranks A357861)
- strictly decreasing: A100881 (ranks A304686), sums A304428 (ranks A357862)
- strictly increasing: A100471 (ranks A334965), sums A304430 (ranks A357864)
A275870 counts collapsible partitions, ranks A300273.
A326534 ranks multiset partitions with a common sum, counted by A321455, normal A326518.
A353851 counts compositions with all equal run-sums, ranks A353848.
A382876 counts permutations of prime indices with distinct run-sums, zeros A381636.
A383095 counts partitions having a unique permutation with equal run-sums, ranks A383099.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Select[Permutations[#],SameQ@@Total/@Split[#]&]]==0&]],{n,0,15}]

Extensions

More terms from Bert Dobbelaere, Apr 26 2025

A383090 Number of integer partitions of n having more than one permutation with all equal run-lengths.

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 4, 5, 9, 14, 20, 28, 43, 55, 77, 107, 141, 183, 244, 312, 411, 521, 664, 837, 1069, 1328, 1667, 2069, 2578, 3166, 3929, 4791, 5895, 7168, 8749, 10594, 12883, 15500, 18741, 22493, 27069, 32334, 38760, 46133, 55065, 65367, 77686, 91905, 108927, 128431, 151674
Offset: 0

Views

Author

Gus Wiseman, Apr 19 2025

Keywords

Examples

			The partition (3322221) has 3 permutations with all equal run-lengths: (2323212), (2321232), (2123232), so is counted under a(15).
The partition (3322111111) has 2 permutations with all equal run-lengths: (1133112211), (1122113311), so is counted under a(16).
The a(3) = 1 through a(9) = 14 partitions:
  (21)  (31)  (32)  (42)    (43)    (53)     (54)
              (41)  (51)    (52)    (62)     (63)
                    (321)   (61)    (71)     (72)
                    (2211)  (421)   (431)    (81)
                            (3211)  (521)    (432)
                                    (3221)   (531)
                                    (3311)   (621)
                                    (4211)   (3321)
                                    (32111)  (4221)
                                             (4311)
                                             (5211)
                                             (32211)
                                             (42111)
                                             (222111)
		

Crossrefs

For no choices we have A382915, ranks A382879.
For at least one choice we have A383013, for run-sums A383098, ranks A383110.
Partitions of this type are ranked by A383089 = positions of terms > 1 in A382857.
The complement is A383091, counted by A383092.
For a unique choice we have A383094, ranks A383112.
The complement for run-sums is A383095 + A383096, ranks A383099 \/ A383100.
For run-sums we have A383097, ranked by A383015 = positions of terms > 1 in A382877.
For distinct instead of equal run-lengths we have A383111, ranks A383113.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A239455 counts Look-and-Say partitions, ranks A351294, conjugate A381432.
A329738 counts compositions with equal run-lengths, ranks A353744.
A351293 counts non-Look-and-Say partitions, ranks A351295, conjugate A381433.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Length[Select[Permutations[#], SameQ@@Length/@Split[#]&]]>1&]],{n,0,15}]

Formula

The complement is counted by A383094 + A382915, ranks A383112 \/ A382879.

Extensions

More terms from Bert Dobbelaere, Apr 26 2025

A133121 Triangle T(n,k) read by rows = number of partitions of n such that number of parts minus number of distinct parts is equal to k, k = 0..n-1.

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 2, 2, 0, 1, 3, 2, 1, 0, 1, 4, 2, 3, 1, 0, 1, 5, 4, 2, 2, 1, 0, 1, 6, 6, 3, 3, 2, 1, 0, 1, 8, 7, 5, 4, 2, 2, 1, 0, 1, 10, 8, 10, 3, 5, 2, 2, 1, 0, 1, 12, 13, 8, 9, 4, 4, 2, 2, 1, 0, 1, 15, 15, 14, 10, 8, 5, 4, 2, 2, 1, 0, 1, 18, 21, 15, 16, 8, 9, 4, 4, 2, 2, 1, 0, 1, 22, 25, 23, 17, 17, 7, 10, 4, 4, 2, 2, 1, 0, 1
Offset: 1

Views

Author

Vladeta Jovovic, Sep 18 2007

Keywords

Examples

			1
1,1
2,0,1
2,2,0,1
3,2,1,0,1
4,2,3,1,0,1
5,4,2,2,1,0,1
6,6,3,3,2,1,0,1
8,7,5,4,2,2,1,0,1
10,8,10,3,5,2,2,1,0,1
12,13,8,9,4,4,2,2,1,0,1
15,15,14,10,8,5,4,2,2,1,0,1
18,21,15,16,8,9,4,4,2,2,1,0,1
From _Gus Wiseman_, Jan 23 2019: (Start)
It is possible to augment the triangle to cover the n = 0 and k = n cases, giving:
   1
   1  0
   1  1  0
   2  0  1  0
   2  2  0  1  0
   3  2  1  0  1  0
   4  2  3  1  0  1  0
   5  4  2  2  1  0  1  0
   6  6  3  3  2  1  0  1  0
   8  7  5  4  2  2  1  0  1  0
  10  8 10  3  5  2  2  1  0  1  0
  12 13  8  9  4  4  2  2  1  0  1  0
  15 15 14 10  8  5  4  2  2  1  0  1  0
  18 21 15 16  8  9  4  4  2  2  1  0  1  0
  22 25 23 17 17  7 10  4  4  2  2  1  0  1  0
  27 30 32 21 19 16  8  9  4  4  2  2  1  0  1  0
Row seven {5, 4, 2, 2, 1, 0, 1, 0} counts the following integer partitions (empty columns not shown).
  (7)    (322)   (2221)  (22111)  (211111)  (1111111)
  (43)   (331)   (4111)  (31111)
  (52)   (511)
  (61)   (3211)
  (421)
(End)
		

Crossrefs

Row sums are A000041. Row polynomials evaluated at -1 are A268498. Row polynomials evaluated at 2 are A006951.

Programs

  • Maple
    b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0,
           add(x^`if`(j=0, 0, j-1)*b(n-i*j, i-1), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..n-1))(b(n$2)):
    seq(T(n), n=1..16);  # Alois P. Heinz, Aug 21 2015
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[x^If[j == 0, 0, j-1]*b[n - i*j, i - 1], {j, 0, n/i}]]]]; T[n_] := Function [p, Table[ Coefficient[p, x, i], {i, 0, n - 1}]][b[n, n]]; Table[T[n], {n, 1, 16}] // Flatten (* Jean-François Alcover, Jan 23 2016, after Alois P. Heinz *)
    Table[Length[Select[IntegerPartitions[n],Length[#]-Length[Union[#]]==k&]],{n,0,15},{k,0,n}] (* augmented version, Gus Wiseman, Jan 23 2019 *)
  • PARI
    partitm(n,m,nmin)={ local(resul,partj) ; if( n < 0 || m <0, return([;]) ; ) ; resul=matrix(0,m); if(m==0, return(resul); ) ; for(j=max(1,nmin),n\m, partj=partitm(n-j,m-1,j) ; for(r1=1,matsize(partj)[1], resul=concat(resul,concat([j],partj[r1,])) ; ) ; ) ; if(m==1 && n >= nmin, resul=concat(resul,[[n]]) ; ) ; return(resul) ; }
    partit(n)={ local(resul,partm,filr) ; if( n < 0, return([;]) ; ) ; resul=matrix(0,n) ; for(m=1,n, partm=partitm(n,m,1) ; filr=vector(n-m) ; for(r1=1,matsize(partm)[1], resul=concat( resul,concat(partm[r1,],filr) ) ; ) ; ) ; return(resul) ; }
    A133121row(n)={ local(p=partit(n),resul=vector(n),nprts,ndprts) ; for(r=1,matsize(p)[1], nprts=0 ; ndprts=0 ; for(c=1,n, if( p[r,c]==0, break, nprts++ ; if(c==1, ndprts++, if(p[r,c]!=p[r,c-1], ndprts++ ) ; ) ; ) ; ) ; k=nprts-ndprts; resul[k+1]++ ; ) ; return(resul) ; }
    A133121()={ for(n=1,20, arow=A133121row(n) ; for(k=1,n, print1(arow[k],",") ; ) ; ) ; }
    A133121() ; \\ R. J. Mathar, Sep 28 2007
    
  • PARI
    tabl(nn) = my(pl = prod(n=1, nn, 1+x^n/(1-y*x^n)) + O(x^nn)); for (k=1, nn-1, print(Vecrev(polcoeff(pl,k,x)))); \\ Michel Marcus, Aug 23 2015

Formula

G.f.: Product_{n>=1} 1 + x^n/(1-y*x^n).

Extensions

More terms from R. J. Mathar, Sep 28 2007

A333191 Number of compositions of n whose run-lengths are either strictly increasing or strictly decreasing.

Original entry on oeis.org

1, 1, 2, 2, 5, 8, 10, 18, 24, 29, 44, 60, 68, 100, 130, 148, 201, 256, 310, 396, 478, 582, 736, 898, 1068, 1301, 1594, 1902, 2288, 2750, 3262, 3910, 4638, 5510, 6538, 7686, 9069, 10670, 12560, 14728, 17170, 20090, 23462, 27292, 31710, 36878, 42704, 49430
Offset: 0

Views

Author

Gus Wiseman, May 17 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(1) = 1 through a(7) = 18 compositions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (111)  (22)    (113)    (33)      (115)
                    (112)   (122)    (114)     (133)
                    (211)   (221)    (222)     (223)
                    (1111)  (311)    (411)     (322)
                            (1112)   (1113)    (331)
                            (2111)   (3111)    (511)
                            (11111)  (11112)   (1114)
                                     (21111)   (1222)
                                     (111111)  (2221)
                                               (4111)
                                               (11113)
                                               (11122)
                                               (22111)
                                               (31111)
                                               (111112)
                                               (211111)
                                               (1111111)
		

Crossrefs

The non-strict version is A332835.
The case of partitions is A333190.
Unimodal compositions are A001523.
Strict compositions are A032020.
Partitions with distinct run-lengths are A098859.
Partitions with strictly increasing run-lengths are A100471.
Partitions with strictly decreasing run-lengths are A100881.
Partitions with weakly decreasing run-lengths are A100882.
Partitions with weakly increasing run-lengths are A100883.
Compositions with equal run-lengths are A329738.
Compositions whose run-lengths are unimodal are A332726.
Compositions whose run-lengths are unimodal or co-unimodal are A332746.
Compositions whose run-lengths are neither incr. nor decr. are A332833.
Compositions that are neither increasing nor decreasing are A332834.
Compositions with weakly increasing run-lengths are A332836.
Compositions that are strictly incr. or strictly decr. are A333147.
Compositions with strictly increasing run-lengths are A333192.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Or[Less@@Length/@Split[#],Greater@@Length/@Split[#]]&]],{n,0,15}]

Formula

a(n > 0) = 2*A333192(n) - A000005(n).

Extensions

Terms a(26) and beyond from Giovanni Resta, May 19 2020

A383092 Number of integer partitions of n having at most one permutation with all equal run-lengths.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 7, 10, 13, 16, 22, 28, 34, 46, 58, 69, 90, 114, 141, 178, 216, 271, 338, 418, 506, 630, 769, 941, 1140, 1399, 1675, 2051, 2454, 2975, 3561, 4289, 5094, 6137, 7274, 8692, 10269, 12249, 14414, 17128, 20110, 23767, 27872, 32849, 38346, 45094, 52552, 61533
Offset: 0

Views

Author

Gus Wiseman, Apr 19 2025

Keywords

Examples

			The partition (222211) has 1 permutation with all equal run-lengths: (221122), so is counted under a(10).
The partition (33211111) has no permutation with all equal run-lengths, so is counted under a(13).
The a(1) = 1 through a(7) = 10 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (111)  (22)    (221)    (33)      (322)
                    (211)   (311)    (222)     (331)
                    (1111)  (2111)   (411)     (511)
                            (11111)  (3111)    (2221)
                                     (21111)   (4111)
                                     (111111)  (22111)
                                               (31111)
                                               (211111)
                                               (1111111)
		

Crossrefs

For no choices we have A382915, ranks A382879.
For at least one choice we have A383013, for run-sums A383098, ranks A383110.
The complement is A383090, ranks A383089.
Partitions of this type are ranked by A383091 = positions of terms <= 1 in A382857.
For a unique choice we have A383094, ranks A383112.
For run-sums instead of lengths we have A383095 + A383096, ranks A383099 \/ A383100.
The complement for run-sums is A383097, ranks A383015, positions of terms > 1 in A382877.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A239455 counts Look-and-Say partitions, ranks A351294, conjugate A381432.
A329738 counts compositions with equal run-lengths, ranks A353744.
A329739 counts compositions with distinct run-lengths, ranks A351596, complement A351291.
A351293 counts non-Look-and-Say partitions, ranks A351295, conjugate A381433.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Select[Permutations[#],SameQ@@Length/@Split[#]&]]<=1&]],{n,0,15}]

Formula

a(n) = A382915(n) + A383094(n).

Extensions

More terms from Bert Dobbelaere, Apr 26 2025

A268498 Expansion of Product_{k>=1} ((1 + 2*x^k) / (1 + x^k)).

Original entry on oeis.org

1, 1, 0, 3, -1, 3, 3, 3, 0, 4, 12, 0, 9, -3, 21, 12, 17, -3, 33, 0, 33, 36, 36, 27, 21, 52, 24, 90, 72, 99, 24, 138, 21, 207, 0, 261, 149, 267, 45, 333, 174, 339, 174, 345, 411, 654, 330, 456, 657, 535, 684, 483, 1233, 489, 1353, 882, 1803, 720, 1902, 756
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 06 2016

Keywords

Comments

It appears that this sequence contains only finitely many nonpositive terms, namely at indices {2, 4, 8, 11, 13, 17, 19, 34}. - Gus Wiseman, Jan 23 2019

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1+2*x^k)/(1+x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c^(1/4) * exp(sqrt(c*n)) / (2*sqrt(3*Pi)*n^(3/4)), where c = Pi^2/3 + 2*log(2)^2 + 4*polylog(2, -1/2) = 2.4571173338382709125... .
a(n) = Sum_{k = 0...n} (-1)^k * A133121(n,k). - Gus Wiseman, Jan 23 2019
G.f.: Product_{k>=1} (1 - Sum_{j>=1} (-1)^j * x^(k*j)). - Ilya Gutkovskiy, Nov 06 2019

A333190 Number of integer partitions of n whose run-lengths are either strictly increasing or strictly decreasing.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 7, 10, 13, 15, 21, 26, 29, 39, 49, 50, 68, 80, 92, 109, 129, 142, 181, 201, 227, 262, 317, 343, 404, 456, 516, 589, 677, 742, 870, 949, 1077, 1207, 1385, 1510, 1704, 1895, 2123, 2352, 2649, 2877, 3261, 3571, 3966, 4363, 4873, 5300, 5914, 6466
Offset: 0

Views

Author

Gus Wiseman, May 17 2020

Keywords

Examples

			The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (221)    (33)      (322)      (44)
                    (211)   (311)    (222)     (331)      (332)
                    (1111)  (2111)   (411)     (511)      (422)
                            (11111)  (3111)    (2221)     (611)
                                     (21111)   (4111)     (2222)
                                     (111111)  (22111)    (5111)
                                               (31111)    (22211)
                                               (211111)   (41111)
                                               (1111111)  (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

The non-strict version is A332745.
The generalization to compositions is A333191.
Partitions with distinct run-lengths are A098859.
Partitions with strictly increasing run-lengths are A100471.
Partitions with strictly decreasing run-lengths are A100881.
Partitions with weakly decreasing run-lengths are A100882.
Partitions with weakly increasing run-lengths are A100883.
Partitions with unimodal run-lengths are A332280.
Partitions whose run-lengths are not increasing nor decreasing are A332641.
Compositions whose run-lengths are unimodal or co-unimodal are A332746.
Compositions that are neither increasing nor decreasing are A332834.
Strictly increasing or strictly decreasing compositions are A333147.
Compositions with strictly increasing run-lengths are A333192.
Numbers with strictly increasing prime multiplicities are A334965.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Or[Less@@Length/@Split[#],Greater@@Length/@Split[#]]&]],{n,0,30}]

A333192 Number of compositions of n with strictly increasing run-lengths.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 7, 10, 14, 16, 24, 31, 37, 51, 67, 76, 103, 129, 158, 199, 242, 293, 370, 450, 538, 652, 799, 953, 1147, 1376, 1635, 1956, 2322, 2757, 3271, 3845, 4539, 5336, 6282, 7366, 8589, 10046, 11735, 13647, 15858, 18442, 21354, 24716, 28630, 32985
Offset: 0

Views

Author

Gus Wiseman, May 17 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(1) = 1 through a(8) = 14 compositions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (122)    (33)      (133)      (44)
                    (211)   (311)    (222)     (322)      (233)
                    (1111)  (2111)   (411)     (511)      (422)
                            (11111)  (3111)    (1222)     (611)
                                     (21111)   (4111)     (2222)
                                     (111111)  (22111)    (5111)
                                               (31111)    (11222)
                                               (211111)   (41111)
                                               (1111111)  (122111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
For example, the composition (1,2,2,1,1,1) has run-lengths (1,2,3), so is counted under a(8).
		

Crossrefs

The case of partitions is A100471.
The non-strict version is A332836.
Strictly increasing compositions are A000009.
Unimodal compositions are A001523.
Strict compositions are A032020.
Partitions with strictly increasing run-lengths are A100471.
Partitions with strictly decreasing run-lengths are A100881.
Compositions with equal run-lengths are A329738.
Compositions whose run-lengths are unimodal are A332726.
Compositions with strictly increasing or decreasing run-lengths are A333191.
Numbers with strictly increasing prime multiplicities are A334965.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Less@@Length/@Split[#]&]],{n,0,15}]
    b[n_, lst_, v_] := b[n, lst, v] = If[n == 0, 1, If[n <= lst, 0, Sum[If[k == v, 0, b[n - k pz, pz, k]], {pz, lst + 1, n}, {k, Floor[n/pz]}]]]; a[n_] := b[n, 0, 0]; a /@ Range[0, 50] (* Giovanni Resta, May 18 2020 *)

Extensions

Terms a(26) and beyond from Giovanni Resta, May 18 2020
Previous Showing 11-20 of 25 results. Next