cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 44 results. Next

A364412 Odd numbers m such that for every k >= 1, m*2^k - 1 has a divisor in the set {3, 7, 11, 19, 31, 37, 41, 61, 73, 109, 151, 331}.

Original entry on oeis.org

144323411864333, 175321252530209, 190779128601685, 316031956469111, 389882208980861, 450590081221877, 2420018284798363, 2715458757443051, 3161282469971861, 3366332338600025, 3643757921262355, 4380746955320089, 4409682697067321, 5089175909950511, 5281690092088615
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jul 23 2023

Keywords

Crossrefs

Formula

For n > 34560, a(n) = a(n-34560) + 10014447295554878022.

A236321 Conjectured number of Riesel numbers less than 10^n.

Original entry on oeis.org

0, 0, 0, 0, 0, 5, 65, 668, 6711
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jan 22 2014

Keywords

Crossrefs

Formula

a(n) ~ A236320(n).

A237880 Conjectured number of distinct integers < 10^n that are Sierpiński or Riesel or simultaneously Sierpiński and Riesel numbers.

Original entry on oeis.org

0, 0, 0, 0, 1, 16, 134, 1345, 13420
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 14 2014

Keywords

Crossrefs

Formula

a(n) = A236320(n) + A236321(n) for n <= 9.

Extensions

Definition clarified by Arkadiusz Wesolowski, Jun 05 2021

A252168 Smallest k > 0 such that |(2n-1) - 2^k| is prime, or -1 if no such k exists.

Original entry on oeis.org

2, 3, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 4, 1, 1, 2, 3, 1, 2, 1, 1, 2, 1, 2, 4, 1, 2, 4, 1, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 4, 1, 2, 4, 3, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 4, 3, 4, 4, 47, 1, 2, 1, 2, 6, 1, 1, 2, 3, 3, 8, 1, 1, 2, 3, 1, 2, 5, 1, 2, 1, 2, 4
Offset: 1

Views

Author

Eric Chen, Dec 14 2014

Keywords

Comments

It is known that a(254602) = -1, because |509203-2^k| is always divisible by 3, 5, 7, 13, 17, or 241. a(1147) is the first unknown term.
a((A101036(n)+1)/2) = -1, so there are infinitely many n such that a(n) = -1.
a((A133122(n)+1)/2) = A096502((A133122(n)-1)/2).

Examples

			a(12) = 2 because 2*12-1 = 23 and that 23-2^1 = 21 is not prime but 23-2^2 = 19 is.
a(69) = 6 because 2*69-1 = 137, |137-2^k| is composite for k = 1, 2, 3, 4, 5 and prime for k = 6.
Even the smallest k can be also very large. For example, a(169) = 791.
a(1147) > 65536.
		

Crossrefs

Programs

  • Mathematica
    Table[k = 1; While[!PrimeQ[Abs[(2*n-1) - 2^k]], k++]; k, {n, 1, 1000}]
  • PARI
    A252168(n)={ my(k=1); n=2*n-1; while(!ispseudoprime(abs(n-2^k)), k++); k }

Extensions

a(19) corrected by Jinyuan Wang, Mar 25 2023

A258154 Least k such that k*2^m - 1 has a covering set of modulus 2*n, or 0 if no such value exists.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 509203, 0, 0, 0, 0, 0, 777149, 0, 0, 0, 0, 0, 10157893, 0, 0, 0, 0, 0, 60014203, 0, 200883553191612793, 0, 0, 0, 7106977, 0, 0, 0
Offset: 1

Views

Author

Arkadiusz Wesolowski, Nov 05 2015

Keywords

Crossrefs

A263392 Riesel numbers that have at least two covering sets.

Original entry on oeis.org

66837283, 68026001, 71344361, 71604733, 74477159, 94270439, 97579567, 122606647, 140022313, 153196541, 170969579, 182720077, 198885523, 211327993, 220316413, 227116031, 280536071, 285155137, 290419777, 292202437, 293175191, 309240779, 324576431, 331006603
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 16 2015

Keywords

Examples

			For every k >= 1, 97579567*2^k - 1 has a divisor in the set {3, 5, 7, 13, 17, 241} and also in the set {3, 5, 13, 17, 97, 241, 257}. 97579567 is therefore in the sequence.
		

Crossrefs

Extensions

1 term inserted by Arkadiusz Wesolowski, Aug 28 2016
More terms from Arkadiusz Wesolowski, Jan 09 2018

A263562 Primes p such that for every k >= 1, p*2^k - 1 has a divisor in the set {3, 5, 13, 17, 97, 241, 257}.

Original entry on oeis.org

1865978047, 1889699677, 2362339121, 3637126963, 11776639499, 19321614419, 20000692169, 20111311169, 20592473107, 20597584901, 21477425107, 23368396573, 23479945327, 25326720611, 26161244323, 27190405961, 27380064223, 27474950743, 31467088979
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 21 2015

Keywords

Comments

What is the smallest term of this sequence that belongs to A180247? Is it the smallest prime Brier number?

Crossrefs

Subsequence of A263561.

A273987 Smallest Riesel number to base n.

Original entry on oeis.org

509203, 63064644938, 9, 346802, 84687, 408034255082, 14, 4, 10176, 862, 25, 302, 4, 36370321851498, 9, 86, 246, 144, 8, 560, 4461, 476, 4, 36, 149, 8, 144, 4, 1369, 134718, 10, 16, 6, 287860, 4, 7772, 13, 4, 81, 8, 15137, 672, 4, 22564, 8177, 14, 3226, 36, 16
Offset: 2

Views

Author

Tim Johannes Ohrtmann, Jun 06 2016

Keywords

Comments

a(2), a(3), a(5), a(6), a(7), a(10), a(15), a(22), a(23), a(30), ... are only conjectural (see links).

Crossrefs

A276417 a(n) = least positive k such that (2*n + 1) - 2^k is prime, or 0 if no such k exists.

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 4, 1, 1, 2, 3, 1, 2, 1, 1, 2, 1, 2, 4, 1, 2, 4, 1, 1, 2, 3, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 4, 1, 2, 4, 3, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 4, 3, 4, 4, 0, 1, 2, 1, 2, 6, 1, 1, 2, 3, 3, 0, 1, 1, 2, 3, 1, 2, 5, 1, 2, 1, 2, 4
Offset: 0

Views

Author

Arkadiusz Wesolowski, Sep 02 2016

Keywords

Comments

a(n) = 1 iff n is in A006254. - Robert Israel, Sep 02 2016
For n > 1, a(n) = 0 iff 2n+1 is de Polignac number, A006285. - Thomas Ordowski, Apr 13 2017

Examples

			a(14) = 4 because (2*14 + 1) - 2^k is composite for k = 1, 2, 3 and prime for k = 4.
		

Crossrefs

Programs

  • Magma
    lst:=[]; for n in [1..173 by 2] do k:=0; c:=k; repeat k+:=1; c+:=1; a:=n-2^k; until a lt 1 or IsPrime(a); if a lt 1 then Append(~lst, 0); else Append(~lst, c); end if; end for; lst;
    
  • Maple
    f:= proc(n) local k;
         for k from 1 do
           if 2*n < 2^k then return 0
           elif isprime(2*n+1-2^k) then return k
           fi
         od
    end proc:
    map(f, [$0..100]); # Robert Israel, Sep 02 2016
  • Mathematica
    Table[If[n <= 2, 0, k = 1; While[! PrimeQ[2 n + 1 - 2^k], k++]; k], {n, 0, 120}] (* Michael De Vlieger, Sep 03 2016 *)
  • PARI
    a(n) = my(k=1); while(2^k < 2*n+1, if(ispseudoprime((2*n+1)-2^k), return(k)); k++); return(0) \\ Felix Fröhlich, Sep 02 2016

Formula

If A188903(n) >= 2, then a(n) = log_2(A188903(n)), otherwise a(n) = 0.

A305473 Let k be a Sierpiński or Riesel number divisible by 2*n - 1, and let p be the largest number in a set of primes which cover every number of the form k*2^m + 1 (or of the form k*2^m - 1) with m >= 1. a(n) = p if and only if there exists no number k that has a covering set with largest prime < p.

Original entry on oeis.org

73, 257, 151, 151, 257, 73, 151, 1321, 73, 109, 1321, 73, 151, 257, 73, 73, 331, 257, 109, 331, 73, 73, 1321, 73, 151, 331, 73, 241
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jun 02 2018

Keywords

Comments

R. G. Stanton found that a(2) = 257.
a(n) >= 73 for any n, see [Stanton].
There exist infinitely many Riesel numbers that are divisible by 15. The number 334437671621489828385689959795356586832846847109919809460835 is one such number.

Examples

			Examples of the covering sets:
- for n = 2, the set is {5, 7, 11, 13, 17, 19, 31, 37, 41, 61, 73, 97, 109, 151, 241, 257},
- for n = 3, the set is {3, 7, 11, 13, 19, 31, 37, 41, 61, 73, 109, 151},
- for n = 4, the set is {3, 5, 11, 13, 19, 31, 37, 41, 61, 73, 151},
- for n = 6, the set is {3, 5, 7, 13, 19, 37, 73},
- for n = 7, the set is {3, 5, 7, 11, 19, 31, 37, 41, 61, 73, 151},
- for n = 8, the set is {7, 11, 13, 17, 19, 29, 31, 37, 41, 43, 61, 71, 73, 97, 109, 113, 127, 151, 193, 211, 241, 257, 281, 331, 337, 421, 433, 577, 673, 1153, 1321},
- for n = 11, the set is {5, 11, 13, 17, 19, 31, 37, 41, 61, 73, 97, 109, 151, 181, 193, 241, 257, 331, 433, 577, 631, 673, 1153, 1321},
- for n = 17, the set is {5, 7, 13, 17, 19, 31, 37, 41, 61, 73, 97, 109, 151, 241, 257, 331},
- for n = 18, the set is {3, 11, 13, 17, 19, 31, 37, 41, 61, 73, 97, 109, 151, 241, 257},
- for n = 20, the set is {5, 7, 11, 17, 19, 31, 37, 41, 61, 73, 97, 109, 151, 241, 257, 331},
- for n = 26, the set is {5, 7, 11, 13, 19, 31, 37, 41, 61, 73, 97, 109, 151, 241, 257, 331},
- for n = 28, the set is {3, 7, 13, 17, 19, 37, 73, 109, 241}.
		

References

  • R. G. Stanton, Further results on covering integers of the form 1 + k * 2^n by primes, pp. 107-114 in: Kevin L. McAvaney (ed.), Combinatorial Mathematics VIII, Lecture Notes in Mathematics 884, Berlin: Springer, 1981.

Crossrefs

Formula

a(((2*n-1)^b+1)/2) = a(n) for every b >= 2.
a((2*b-1)*n-b+1) >= a(n) for every b >= 2; n > 1.
a(n) = 73 if and only if gcd(2*n-1, 70050435) = 1.
Previous Showing 21-30 of 44 results. Next