A213554
Principal diagonal of the convolution array A213553.
Original entry on oeis.org
1, 43, 334, 1406, 4271, 10577, 22764, 44220, 79437, 134167, 215578, 332410, 495131, 716093, 1009688, 1392504, 1883481, 2504067, 3278374, 4233334, 5398855, 6807977, 8497028, 10505780, 12877605, 15659631, 18902898, 22662514
Offset: 1
-
List([1..30], n-> n*(39*n^4 +15*n^3 -25*n^2 +1)/30); # G. C. Greubel, Jul 31 2019
-
[n*(39*n^4 +15*n^3 -25*n^2 +1)/30: n in [1..30]]; // G. C. Greubel, Jul 31 2019
-
(* First program *)
b[n_]:= n; c[n_]:= n^3;
T[n_, k_]:= Sum[b[k-i] c[n+i], {i, 0, k-1}]
TableForm[Table[T[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[T[n-k+1, k], {n, 12}, {k, n, 1, -1}]]
r[n_]:= Table[T[n, k], {k, 1, 60}] (* A213553 *)
d = Table[T[n, n], {n, 1, 40}] (* A213554 *)
s[n_]:= Sum[T[i, n+1-i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A101089 *)
(* Second program *)
Table[(39n^5+15n^4-25n^3+n)/30,{n,30}] (* or *) LinearRecurrence[ {6,-15,20,-15,6,-1},{1,43,334,1406,4271,10577},30] (* Harvey P. Dale, Jan 15 2013 *)
-
vector(30, n, n*(39*n^4 +15*n^3 -25*n^2 +1)/30) \\ G. C. Greubel, Jul 31 2019
-
[n*(39*n^4 +15*n^3 -25*n^2 +1)/30 for n in (1..30)] # G. C. Greubel, Jul 31 2019
A302352
a(n) = Sum_{k=0..n} k^4*binomial(2*n-k,n).
Original entry on oeis.org
0, 1, 19, 155, 936, 4884, 23465, 107107, 472600, 2036838, 8631206, 36119798, 149724940, 616104450, 2520629685, 10265200035, 41650094640, 168481778790, 679847488650, 2737640364810, 11005139655744, 44176226269728, 177114113623194, 709364594864910, 2838599638596176, 11350436081373340
Offset: 0
-
Table[Sum[k^4 Binomial[2 n - k, n], {k, 0, n}], {n, 0, 25}]
Table[SeriesCoefficient[x (1 + 11 x + 11 x^2 + x^3)/(1 - x)^(n + 6), {x, 0, n}], {n, 0, 25}]
Table[2^(2 n + 1) n (75 n^3 + 52 n^2 - 3 n - 4) Gamma[n + 3/2]/(Sqrt[Pi] Gamma[n + 6]), {n, 0, 25}]
CoefficientList[Series[(24 - 180 x + 410 x^2 - 285 x^3 + 31 x^4 + Sqrt[1 - 4 x] (-24 + 132 x - 194 x^2 + 65 x^3 - x^4))/(2 Sqrt[1 - 4 x] x^5), {x, 0, 25}], x]
CoefficientList[Series[E^(2 x) (-576 + 360 x - 244 x^2 + 75 x^3) BesselI[0, 2 x]/x^3 + E^(2 x) (576 - 360 x + 532 x^2 - 255 x^3 + 75 x^4) BesselI[1, 2 x]/x^4, {x, 0, 25}], x]* Range[0, 25]!
-
a(n) = sum(k=0, n, k^4*binomial(2*n-k,n)); \\ Michel Marcus, Apr 07 2018
A257449
a(n) = 75*(2^n - 1) - 4*n^3 - 18*n^2 - 52*n.
Original entry on oeis.org
1, 17, 99, 373, 1115, 2901, 6907, 15509, 33483, 70405, 145451, 296997, 601819, 1213493, 2439195, 4893301, 9804587, 19630629, 39286603, 78602885, 157240251, 314520277, 629086139, 1258224213, 2516507275, 5033080901, 10066236267, 20132555749, 40265204123
Offset: 1
This sequence provides the antidiagonal sums of the array:
1, 16, 81, 256, 625, 1296, ... A000583
1, 17, 98, 354, 979, 2275, ... A000538
1, 18, 116, 470, 1449, 3724, ... A101089
1, 19, 135, 605, 2054, 5778, ... A101090
1, 20, 155, 760, 2814, 8592, ... A101091
1, 21, 176, 936, 3750, 12342, ... A254681
...
See also A254681 (Example field).
-
[75*(2^n-1)-4*n^3-18*n^2-52*n: n in [1..30]]; // Vincenzo Librandi, Apr 24 2015
-
Table[75 (2^n - 1) - 4 n^3 - 18 n^2 - 52 n, {n, 30}]
A302353
a(n) = Sum_{k=0..n} k^n*binomial(2*n-k,n).
Original entry on oeis.org
1, 1, 7, 69, 936, 16290, 345857, 8666413, 250355800, 8191830942, 299452606190, 12095028921250, 534924268768540, 25710497506696860, 1334410348734174285, 74379234152676275325, 4431350132232658244400, 281020603194039519937590, 18900157831016574533520330, 1343698678390575915132318870
Offset: 0
For n = 4 we have:
------------------------
0 1 2 3 [4]
------------------------
0, 1, 17, 98, 354, ... A000538 (partial sums of fourth powers)
0, 1, 18, 116, 470, ... A101089 (partial sums of A000538)
0, 1, 19, 135, 605, ... A101090 (partial sums of A101089)
0, 1, 20, 155, 760, ... A101091 (partial sums of A101090)
0, 1, 21, 176, [936], ... A254681 (partial sums of A101091)
------------------------
therefore a(4) = 936.
-
Join[{1}, Table[Sum[k^n Binomial[2 n - k, n], {k, 0, n}], {n, 19}]]
Table[SeriesCoefficient[HurwitzLerchPhi[x, -n, 0]/(1 - x)^(n + 1), {x, 0, n}], {n, 0, 19}]
Comments