A101100 The first summation of row 5 of Euler's triangle - a row that will recursively accumulate to the power of 5.
1, 27, 93, 119, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120
Offset: 1
References
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 533.
Links
- D. J. Pengelley, The bridge between the continuous and the discrete via original sources in Study the Masters: The Abel-Fauvel Conference [pdf], Kristiansand, 2002, (ed. Otto Bekken et al), National Center for Mathematics Education, University of Gothenburg, Sweden, in press.
- C. Rossiter, Depictions, Explorations and Formulas of the Euler/Pascal Cube.
- Eric Weisstein's World of Mathematics Worpitzky's Identity of 1883.
- Eric Weisstein's World of Mathematics Eulerian Number.
- Eric Weisstein's World of Mathematics Nexus number.
- Eric Weisstein's World of Mathematics Finite Differences.
- Index entries for linear recurrences with constant coefficients, signature (1).
Crossrefs
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x*(1+26*x+66*x^2+26*x^3+x^4)/(1-x) )); // G. C. Greubel, May 07 2019 -
Mathematica
MagicNKZ=Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}]; Table[MagicNKZ, {n, 5, 5}, {z, 1, 1}, {k, 0, 34}] (* or *) SeriesAtLevelR = Sum[Eulerian[n, i-1]*Binomial[n+x-i+r, n+r], {i,1,n}]; Table[SeriesAtLevelR, {n, 5, 5}, {r, -5, -5}, {x, 5, 35}]
-
PARI
{a(n) = if(n==1, 1, if(n==2, 27, if(n==3, 93, if(n==4, 119, 120))) )}; \\ G. C. Greubel, May 07 2019
-
Sage
a=(x*(1+26*x+66*x^2+26*x^3+x^4)/(1-x)).series(x, 40).coefficients(x, sparse=False); a[1:] # G. C. Greubel, May 07 2019
Formula
a(n) = 120, n>4.
a(n) = Sum_{j=1..m} Eulerian(m, j-1)*binomial(m+n-j+r, m+r), with m = 5, r = -5.
a(n) = Sum_{j=0..n+1} (-1)^j*binomial(m+1-z, j)*(n-j+1)^n, with m = 5, z = 1.
G.f.: x*(1+26*x+66*x^2+26*x^3+x^4)/(1-x). - Colin Barker, Mar 01 2012
Comments