cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 111 results. Next

A050358 Number of ordered factorizations of n with 3 levels of parentheses.

Original entry on oeis.org

1, 1, 1, 5, 1, 9, 1, 25, 5, 9, 1, 65, 1, 9, 9, 125, 1, 65, 1, 65, 9, 9, 1, 425, 5, 9, 25, 65, 1, 121, 1, 625, 9, 9, 9, 605, 1, 9, 9, 425, 1, 121, 1, 65, 65, 9, 1, 2625, 5, 65, 9, 65, 1, 425, 9, 425, 9, 9, 1, 1145, 1, 9, 65, 3125, 9, 121, 1, 65, 9, 121, 1, 4825, 1, 9, 65, 65, 9, 121
Offset: 1

Views

Author

Christian G. Bower, Oct 15 1999

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).
The Dirichlet inverse is given by A050356, turning all but the first element of A050356 negative. - R. J. Mathar, Jul 15 2010

Examples

			6 = (((6))) = (((3*2))) = (((2*3))) = (((3)*(2))) = (((2)*(3))) = (((3))*((2))) = (((2))*((3))) = (((3)))*(((2))) = (((2)))*(((3))).
		

Crossrefs

Cf. A002033, A050351-A050359. a(p^k)=5^(k-1). a(A002110)=A050353.

Formula

Dirichlet g.f.: (4-3*zeta(s))/(5-4*zeta(s)).
a(n) = A050359(A101296(n)). - R. J. Mathar, May 26 2017
Sum_{k=1..n} a(k) ~ -n^r / (16*r*Zeta'(r)), where r = 2.7884327053324956670606046076818023223650950899573090550836329583345... is the root of the equation Zeta(r) = 5/4. - Vaclav Kotesovec, Feb 02 2019

A050374 Number of ordered factorizations of n into composite factors.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 2, 0, 1, 0, 1, 1, 1, 0, 3, 1, 1, 1, 1, 0, 1, 0, 3, 1, 1, 1, 4, 0, 1, 1, 3, 0, 1, 0, 1, 1, 1, 0, 5, 1, 1, 1, 1, 0, 3, 1, 3, 1, 1, 0, 5, 0, 1, 1, 5, 1, 1, 0, 1, 1, 1, 0, 7, 0, 1, 1, 1, 1, 1, 0, 5, 2, 1, 0, 5, 1, 1, 1, 3, 0, 5, 1, 1, 1, 1, 1, 10, 0, 1, 1, 4, 0, 1
Offset: 1

Views

Author

Christian G. Bower, Nov 15 1999

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3,1).
The Dirichlet inverse is given by A005171, all but the first term in A005171 turned negative. - R. J. Mathar, Jul 15 2010

Crossrefs

Programs

  • Maple
    read(transforms):
    [1, seq(-A005171(n), n=2..100)] ;
    a050374 := DIRICHLETi(%) ; # R. J. Mathar, May 26 2017
  • PARI
    A050374(n) = if(1==n,n,sumdiv(n,d,if(dA050374(d),0))); \\ Antti Karttunen, Oct 20 2017

Formula

Dirichlet g.f.: 1/(1-B(s)) where B(s) is D.g.f. of characteristic function of composite numbers.
a(n) = A050375(A101296(n)). - R. J. Mathar, May 26 2017
For n >= 1, a(p^n) = A000045(n-1), for any prime p.
For n >= 0, a(A002110(n)) = A032032(n).

A173675 Let d_1, d_2, d_3, ..., d_tau(n) be the divisors of n; a(n) = number of permutations p of d_1, d_2, d_3, ..., d_tau(n) such that p_(i+1)/p_i is a prime or 1/prime for i = 1,2,...,tau(n)-1 and p_1 <= p_tau(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 1, 1, 1, 4, 1, 8, 1, 4, 4, 1, 1, 8, 1, 8, 4, 4, 1, 14, 1, 4, 1, 8, 1, 72, 1, 1, 4, 4, 4, 20, 1, 4, 4, 14, 1, 72, 1, 8, 8, 4, 1, 22, 1, 8, 4, 8, 1, 14, 4, 14, 4, 4, 1, 584, 1, 4, 8, 1, 4, 72, 1, 8, 4, 72, 1, 62, 1, 4, 8, 8, 4, 72, 1, 22, 1, 4
Offset: 1

Views

Author

N. J. A. Sloane, Nov 24 2010

Keywords

Comments

Variant of A179926 in which the permutation of the divisors may start with any divisor but the first term may not be larger than the last term.
From Andrew Howroyd, Oct 26 2019: (Start)
Equivalently, the number of undirected Hamiltonian paths in a graph with vertices corresponding to the divisors of n and edges connecting divisors that differ by a prime.
a(n) depends only on the prime signature of n. See A295786. (End)

Examples

			a(1) = 1: [1].
a(2) = 1: [1,2].
a(6) = 4: [1,2,6,3], [1,3,6,2], [2,1,3,6], [3,1,2,6].
a(12) = 8: [1,2,4,12,6,3], [1,3,6,2,4,12], [1,3,6,12,4,2], [2,1,3,6,12,4], [3,1,2,4,12,6], [3,1,2,6,12,4], [4,2,1,3,6,12], [6,3,1,2,4,12].
		

Crossrefs

See A295557 for another version.

Programs

  • Maple
    with(numtheory):
    q:= (i, j)-> is(i/j, integer) and isprime(i/j):
    b:= proc(s, l) option remember; `if`(s={}, 1, add(
         `if`(q(l, j) or q(j, l), b(s minus{j}, j), 0), j=s))
        end:
    a:= proc(n) option remember; ((s-> add(b(s minus {j}, j),
           j=s))(divisors(n)))/`if`(n>1, 2, 1)
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Nov 26 2017
  • Mathematica
    b[s_, l_] := b[s, l] = If[s == {}, 1, Sum[If[PrimeQ[l/j] || PrimeQ[j/l], b[s ~Complement~ {j}, j], 0], {j, s}]];
    a[n_] := a[n] = Function[s, Sum[b[s ~Complement~ {j}, j], {j, s}]][ Divisors[n]] / If[n > 1, 2, 1];
    Array[a, 100] (* Jean-François Alcover, Nov 28 2017, after Alois P. Heinz *)

Formula

From Andrew Howroyd, Oct 26 2019: (Start)
a(p^e) = 1 for prime p.
a(A002110(n)) = A284673(n).
a(n) = A295786(A101296(n)). (End)

Extensions

Alois P. Heinz corrected and clarified the definition and provided more terms. - Nov 07 2014

A249770 Irregular triangle read by rows: T(n,k) is the number of Abelian groups of order n with k invariant factors (2 <= n, 1 <= k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 2

Views

Author

Álvar Ibeas, Nov 06 2014

Keywords

Comments

The length of n-th row is A051903(n) and its last element is A249773(A101296(n)).
T(n,k) depends only on k and the prime signature of n.

Examples

			First rows:
1;
1;
1,1;
1;
1;
1;
1,1,1;
1,1;
1;
1;
1,1;
1;
1;
1;
1,2,1,1;
1;
...
		

Crossrefs

Programs

  • Mathematica
    f[{x_, y_}] := x^IntegerPartitions[y];
    g[n_] := FactorInteger[n][[1, 1]];
    h[list_] := Apply[Times,Map[PadRight[#, Max[Map[Length, SplitBy[list, g]]], 1] &,SplitBy[list, g]]]; t[list_] := Tally[Map[Length, list]][[All, 2]];
    Map[t, Table[Map[h, Join @@@ Tuples[Map[f, FactorInteger[n]]]], {n, 2, 50}]] // Grid (* Geoffrey Critzer, Nov 26 2015 *)

Formula

T(n,k) = A249771(A101296(n),k).
T(n,1) = 1. If k > 1 and n = Product(p_i^e_i), T(n,k) = Sum(Product(A008284(e_i,k), i in I) * Product(A026820(e_i,k-1), i not in I)), where the sum is taken over nonempty subsets I of {1,...,omega(n)}.
If p is prime and gcd(p,n) = 1, T(pn,k) = T(n,k).
Dirichlet g.f. of column sums: zeta(s)zeta(2s)···zeta(ms) = 1 + Sum_{n >= 2} (Sum_{k=1..m} T(n,k)) / n^s.
T(n,1) + T(n,2) = A046951(n)

A297174 An auxiliary sequence for computing A300250. See comments and examples.

Original entry on oeis.org

0, 1, 1, 5, 1, 19, 1, 69, 5, 19, 1, 2123, 1, 19, 19, 4165, 1, 2131, 1, 2125, 19, 19, 1, 4228171, 5, 19, 69, 2125, 1, 526631, 1, 2101317, 19, 19, 19, 268706123, 1, 19, 19, 4228237, 1, 526643, 1, 2125, 2123, 19, 1, 550026380363, 5, 2131, 19, 2125, 1, 4229203, 19, 4228237, 19, 19, 1, 8798249190555, 1, 19, 2123, 17181970501, 19, 526643, 1, 2125
Offset: 1

Views

Author

Antti Karttunen, Mar 07 2018

Keywords

Comments

In binary representation of a(n), the distances between successive 1's (one more than the lengths of intermediate 0-runs) from the right record the prime signature ranks (A101296) of successive divisors of n, as ordered from the smallest divisor (> 1) to the largest divisor (= n).

Examples

			a(1) = 0 by convention (as 1 has no prime divisors).
a(p) = 1 for any prime p.
For any n > 1, the least significant 1-bit is at rightmost position (bit-0), signifying the smallest prime factor of n, which is always the least divisor > 1.
For n = 4 = 2*2, the next divisor of 4 after 2 is 4, for which A101296(4) = 3, thus the second least significant 1-bit comes 3-1 = 2 positions left of the rightmost 1, thus a(4) = 2^0 + 2^(3-1) = 1+4 = 5.
For n = 6 with divisors d = 2, 3 and 6 larger than one, for which A101296(d)-1 gives 1, 1 and 3, thus a(6) = 2^(1-1) + 2^(1-1+1) + 2^(1-1+1+3) = 2^0 + 2^1 + 2^4 = 19.
For n = 12 with divisors d = 2, 3, 2*2, 2*3, 2*2*3 larger than one, A101296(d)-1 gives 1, 1, 2, 3 and 5 thus a(12) = 2^0 + 2^(0+1) + 2^(0+1+2) + 2^(0+1+2+3) + 2^(0+1+2+3+5) = 2123.
For n = 18 with divisors d = 2, 3, 2*3, 3*3, 2*3*3 larger than one, A101296(d)-1 gives 1, 1, 3, 2, and 5 thus a(18) = 2^0 + 2^(0+1) + 2^(0+1+3) + 2^(0+1+3+2) + 2^(0+1+3+2+5) = 2131.
		

Crossrefs

Cf. A101296, A300250 (restricted growth sequence transform of this sequence).
Cf. also A292258, A294897.

Programs

  • PARI
    up_to = 4096;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523.
    v101296 = rgs_transform(vector(up_to, n, A046523(n)));
    A101296(n) = v101296[n];
    A297174(n) = { my(s=0,i=-1); fordiv(n, d, if(d>1, i += (A101296(d)-1); s += 2^i)); (s); };

A305790 Filter-sequence combining prime signature of n (A046523) and similar signature obtained when (0,1)-polynomial encoded in the binary expansion of n is factored over Q (A304751).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 6, 4, 2, 7, 2, 4, 4, 8, 2, 9, 2, 7, 4, 4, 2, 10, 11, 4, 12, 7, 2, 13, 2, 14, 4, 4, 4, 15, 2, 4, 4, 10, 2, 13, 2, 7, 9, 4, 2, 16, 6, 17, 4, 7, 2, 18, 19, 10, 4, 4, 2, 20, 2, 4, 9, 21, 4, 13, 2, 7, 19, 13, 2, 22, 2, 4, 9, 7, 19, 13, 2, 16, 23, 4, 2, 20, 4, 4, 19, 10, 2, 24, 19, 7, 4, 4, 4, 25, 2, 9, 7, 26, 2, 13, 2, 10, 13
Offset: 1

Views

Author

Antti Karttunen, Jun 10 2018

Keywords

Comments

Restricted growth sequence transform of ordered pair [A046523(n), A304751(n)].
For all i, j: a(i) = a(j) => A305821(i) = A305821(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(occurrences = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(occurrences,invec[i]), my(pp = mapget(occurrences, invec[i])); outvec[i] = outvec[pp] , mapput(occurrences,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    Aux304751(n) = { my(p=0, f=vecsort((factor(Pol(binary(n)))[, 2]), , 4)); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }
    Aux305790(n) = [A046523(n), Aux304751(n)];
    v305790 = rgs_transform(vector(up_to,n,Aux305790(n)));
    A305790(n) = v305790[n];

A318890 Filter sequence combining the prime signature of n (A046523) with the prime signature of its conjugated prime factorization (A278221).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 10, 15, 16, 12, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 14, 33, 34, 35, 36, 37, 38, 39, 40, 41, 18, 42, 43, 44, 45, 18, 46, 47, 48, 22, 31, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 39, 63, 64, 65, 66, 18, 67, 20, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 53, 36, 80, 81, 82, 83, 84, 85, 26, 86, 87, 88, 89, 90, 91, 39
Offset: 1

Views

Author

Antti Karttunen, Sep 16 2018

Keywords

Comments

Restricted growth sequence transform of A286454.
For all i, j: a(i) = a(j) => A318891(i) = A318891(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A122111(n) = if(1==n,n,prime(bigomega(n))*A122111(A064989(n)));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A278221(n) = A046523(A122111(n));
    A318890aux(n) = [A046523(n), A278221(n)];
    v318890 = rgs_transform(vector(up_to,n,A318890aux(n)));
    A318890(n) = v318890[n];

A320004 Filter sequence combining the largest proper divisor of n (A032742) with n's residue modulo 4 (A010873), and a single bit (A319710) telling whether the smallest prime factor is unitary.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 3, 7, 8, 9, 3, 10, 5, 11, 12, 13, 5, 14, 3, 15, 16, 17, 3, 18, 19, 20, 21, 22, 5, 23, 3, 24, 25, 26, 27, 28, 5, 29, 30, 31, 5, 32, 3, 33, 34, 35, 3, 36, 37, 38, 39, 40, 5, 41, 42, 43, 44, 45, 3, 46, 5, 47, 48, 49, 50, 51, 3, 52, 53, 54, 3, 55, 5, 56, 57, 58, 25, 59, 3, 60, 61, 62, 3, 63, 64, 65, 66, 67, 5, 68, 30, 69, 70, 71, 72, 73, 5, 74, 75, 76, 5, 77, 3
Offset: 1

Views

Author

Antti Karttunen, Oct 04 2018

Keywords

Comments

Restricted growth sequence transform of triple [A010873(A020639(n)), A032742(n), A319710(n)], or equally, of ordered pair [A319714(n), A319710(n)].
Here any nontrivial equivalence classes (that is, when we exclude the singleton classes and two infinite classes of A002144 and A002145), like the example shown, may not contain any even numbers, nor any numbers from A283050. See additional comments in A319717 and A319994.
For all i, j:
a(i) = a(j) => A024362(i) = A024362(j),
a(i) = a(j) => A067029(i) = A067029(j),
a(i) = a(j) => A071178(i) = A071178(j),
a(i) = a(j) => A077462(i) = A077462(j) => A101296(i) = A101296(j).

Examples

			For n = 33 (3*11) and n = 77 (7*11), the modulo 4 residue of the smallest prime factor is 3, and the largest proper divisors (A032742) is also equal 11, and the smallest prime factor is unitary. Thus a(33) = a(77) (= 25, a running count value allotted by rgs-transform).
		

Crossrefs

Cf. also A319717 (analogous sequence for modulo 6 residues).
Cf. A002145 (positions of 3's), A002144 (positions of 5's).
Differs from A319704 for the first time at n=77, and from A319714 for the first time at n=49.

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A032742(n) = if(1==n,n,n/vecmin(factor(n)[,1]));
    A286474(n) = if(1==n,n,(4*A032742(n) + (n % 4)));
    A319710(n) = ((n>1)&&(factor(n)[1,2]>1));
    v320004 = rgs_transform(vector(up_to,n,[A286474(n),A319710(n)]));
    A320004(n) = v320004[n];

A355836 Lexicographically earliest infinite sequence such that a(i) = a(j) => A046523(i) = A046523(j) and A355442(i) = A355442(j) for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 8, 5, 10, 3, 11, 3, 12, 5, 8, 3, 13, 14, 8, 15, 16, 3, 17, 3, 18, 19, 8, 20, 21, 3, 8, 5, 22, 3, 23, 3, 12, 24, 8, 3, 25, 14, 26, 5, 16, 3, 27, 20, 28, 5, 8, 3, 29, 3, 8, 30, 31, 20, 23, 3, 12, 5, 32, 3, 33, 3, 8, 34, 16, 19, 23, 3, 35, 36, 8, 3, 37, 20, 8, 5, 38, 3, 29, 19, 12, 19, 8, 20, 39, 3, 12, 9, 40, 3, 23, 3, 28, 41
Offset: 1

Views

Author

Antti Karttunen, Jul 20 2022

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A046523(n), A355442(n)].
For all i, j: A355835(i) = A355835(j) => a(i) = a(j).

Examples

			a(6) = a(15) = a(21) = a(39) = a(51) = a(57) = a(69) = a(87) = a(111) = etc, for an infinite number of other indices k, because for all these k, A355442(k) = 5 and their prime signatures (A101296) are equal, as they are all squarefree semiprimes, A006881.
In contrast, powers of 2 (1, 2, 4, 8, 16, ..., A000079) obtain unique values in this sequence, and in general, for all proper prime powers k (A246547) for which A355442(k) > 1 [that are terms of A355822], the value a(k) is unique in this sequence.
		

Crossrefs

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A355442(n) = gcd(A003961(n), A276086(n));
    Aux355836(n) = [A046523(n), A355442(n)];
    v355836 = rgs_transform(vector(up_to,n,Aux355836(n)));
    A355836(n) = v355836[n];

A369031 LCM-transform of permutation induced by partition conjugation via Heinz numbers (A122111).

Original entry on oeis.org

1, 2, 2, 3, 2, 1, 2, 5, 3, 1, 2, 1, 2, 1, 1, 7, 2, 1, 2, 1, 1, 1, 2, 1, 3, 1, 5, 1, 2, 1, 2, 11, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 13, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 7, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 12 2024

Keywords

Comments

See discussion at A368900.
From the reduced formula it follows that for all i, j >= 1: A101296(i) = A101296(j) => a(i) = a(j), that is, the value of each a(n) is completely determined by its prime signature. Note that the same does not hold for related A369032.

Crossrefs

Programs

  • PARI
    up_to = 2^18;
    LCMtransform(v) = { my(len = length(v), b = vector(len), g = vector(len)); b[1] = g[1] = 1; for(n=2,len, g[n] = lcm(g[n-1],v[n]); b[n] = g[n]/g[n-1]); (b); };
    A122111(n) = if(1==n,n,my(f=factor(n), es=Vecrev(f[,2]),is=concat(apply(primepi,Vecrev(f[,1])),[0]),pri=0,m=1); for(i=1, #es, pri += es[i]; m *= prime(pri)^(is[i]-is[1+i])); (m));
    v369031 = LCMtransform(vector(up_to,i,A122111(i)));
    A369031(n) = v369031[n];
    
  • PARI
    A369031(n) = if(isprime(n),2, my(e=ispower(n,,&n)); if(e && isprime(n), prime(e), 1));

Formula

a(n) = lcm {1..A122111(n)} / lcm {1..A122111(n-1)}.
a(n) = A014963(A122111(n)). [A122111 satisfies the property S given in A368900]
If n = p^k, p prime, k >= 1, then a(n) = A000040(k), otherwise a(n) = 1.
Previous Showing 71-80 of 111 results. Next