cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A152584 Decimal expansion of (Pi^3)/24.

Original entry on oeis.org

1, 2, 9, 1, 9, 2, 8, 1, 9, 5, 0, 1, 2, 4, 9, 2, 5, 0, 7, 3, 1, 1, 5, 1, 3, 1, 2, 7, 7, 9, 5, 8, 9, 1, 4, 6, 6, 7, 5, 9, 3, 8, 7, 0, 2, 3, 5, 7, 8, 5, 4, 6, 1, 5, 3, 9, 2, 2, 6, 8, 9, 0, 8, 7, 6, 5, 8, 5, 9, 9, 7, 8, 8, 2, 2, 7, 7, 3, 7, 7, 5, 1, 5, 6, 5, 2, 7, 9, 2, 0, 9, 6, 9, 1, 7, 8, 6, 9, 2, 4, 7, 0, 9, 5, 8
Offset: 1

Views

Author

Eric Desbiaux, Dec 08 2008

Keywords

Comments

Consider infinite sum made of areas of circles Pi*radius^2 with diameter 1/n.
The volume is (Pi/4)*(1 + 1/4 + 1/9 + 1/16 + 1/25 + ... + 1/n^2)
= (1 - 1/3 + 1/5 - 1/7 + 1/9 - 1/11 + ...)*(1 + 1/4 + 1/9 + 1/16 + 1/25 + ...)
= (Pi/4) * (Pi^2/6) = Pi^3/24.
Equals volume of a cone of height Pi^2/8 and radius 1.
Equals volume of a sphere (4*Pi*Pi^2/32)/3 with radius^3 = (Pi^2/32).

Examples

			1.291928195012492507311513127795891466759387023578...
		

Crossrefs

Programs

Formula

Equals Integral_{x=0..oo} arctan(x)^2/(x^2 + 1) dx. - Amiram Eldar, Aug 06 2020

A164105 Decimal expansion of Pi^3/6.

Original entry on oeis.org

5, 1, 6, 7, 7, 1, 2, 7, 8, 0, 0, 4, 9, 9, 7, 0, 0, 2, 9, 2, 4, 6, 0, 5, 2, 5, 1, 1, 1, 8, 3, 5, 6, 5, 8, 6, 7, 0, 3, 7, 5, 4, 8, 0, 9, 4, 3, 1, 4, 1, 8, 4, 6, 1, 5, 6, 9, 0, 7, 5, 6, 3, 5, 0, 6, 3, 4, 3, 9, 9, 1, 5, 2, 9, 1, 0, 9, 5, 1, 0, 0, 6, 2, 6, 1, 1, 1, 6, 8, 3, 8, 7, 6, 7, 1, 4, 7, 6, 9, 8, 8, 3, 8, 3, 5
Offset: 1

Views

Author

R. J. Mathar, Aug 10 2009

Keywords

Comments

Volume of the 6-dimensional unit sphere.

Examples

			Equals 5.1677127800499700292460525111835658670375480943...
		

Crossrefs

Programs

Formula

Equals A091925/6 = A019670*A102753.

A276023 Decimal expansion of 32*Pi^4/945.

Original entry on oeis.org

3, 2, 9, 8, 5, 0, 8, 9, 0, 2, 7, 3, 8, 7, 0, 6, 8, 6, 9, 3, 8, 2, 1, 0, 6, 5, 0, 3, 7, 4, 4, 5, 1, 1, 7, 0, 3, 6, 9, 4, 4, 7, 9, 0, 9, 1, 5, 6, 1, 8, 3, 4, 3, 8, 5, 3, 1, 9, 5, 4, 6, 5, 6, 1, 3, 5, 3, 5, 1, 0, 4, 4, 9, 3, 3, 1, 7, 1, 4, 5, 7, 9, 9, 8, 2, 9, 6, 2, 7, 0, 0, 0, 1, 2, 7, 9, 9, 7, 4, 7, 7, 5, 7, 6, 8, 6, 2, 9, 0, 0, 0, 5, 4, 6, 3, 5, 9, 5, 9, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 16 2016

Keywords

Comments

Volume of the 9-dimensional unit sphere.
More generally, the ordinary generation function for the volume of the n-dimensional unit sphere is exp(Pi*x^2)*(erf(sqrt(Pi)*x) + 1) = 1 + 2*x + Pi*x^2 + (4*Pi/3)*x^3 + (Pi^2/2)*x^4 + ...

Examples

			3.2985089027387068693821065037445117...
		

Crossrefs

Cf. similar sequences of the volume of the n-dimensional unit sphere: A000796 (n = 2), 10*A019699 (n = 3), A102753 (n = 4), A164103 (n = 5), A164105 (n = 6), A164106 (n = 7), A164108 (n = 8).

Programs

  • Mathematica
    RealDigits[(32 Pi^4)/945, 10, 120][[1]]
  • PARI
    (32*Pi^4)/945 \\ G. C. Greubel, Apr 09 2017

Formula

Equals 32*A092425*A021949.

A344964 Decimal expansion of the sum of the reciprocals of the squares of the zeros of the digamma function.

Original entry on oeis.org

5, 2, 6, 7, 9, 8, 0, 1, 2, 4, 3, 5, 2, 3, 9, 7, 9, 8, 3, 7, 3, 5, 6, 2, 1, 6, 3, 6, 2, 9, 3, 3, 1, 9, 7, 9, 4, 3, 1, 6, 2, 6, 6, 8, 4, 3, 8, 7, 0, 0, 2, 5, 0, 5, 6, 3, 5, 7, 5, 0, 8, 0, 2, 6, 1, 1, 2, 2, 8, 8, 2, 0, 4, 9, 0, 5, 3, 5, 9, 2, 9, 1, 1, 6, 2, 1, 4
Offset: 1

Views

Author

Amiram Eldar, Jun 03 2021

Keywords

Comments

The sum is Sum_{k>=0} 1/x_k^2, where x_k is the k-th zero of the digamma function, i.e., root of psi(x) = 0: x_0 = 1.461632... (A030169) is the only positive root, x_1 = -0.504083... (A175472), etc.

Examples

			5.26798012435239798373562163629331979431626684387002...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^2/2 + EulerGamma^2, 10, 100][[1]]

Formula

Equals Pi^2/2 + gamma^2 = A102753 + A155969, where gamma is Euler's constant (A001620).

A344965 Decimal expansion of the sum of the reciprocals of the cubes of the zeros of the digamma function (negated).

Original entry on oeis.org

7, 8, 4, 8, 9, 8, 8, 2, 6, 2, 8, 0, 4, 5, 0, 6, 3, 0, 4, 8, 9, 8, 8, 3, 7, 3, 2, 7, 1, 6, 0, 5, 5, 0, 6, 7, 1, 1, 0, 1, 6, 4, 1, 2, 7, 9, 1, 1, 6, 3, 8, 0, 3, 2, 9, 2, 3, 2, 5, 3, 0, 0, 3, 4, 9, 8, 6, 4, 6, 7, 5, 0, 5, 8, 0, 6, 0, 1, 0, 3, 4, 4, 2, 7, 6, 1, 6
Offset: 1

Views

Author

Amiram Eldar, Jun 03 2021

Keywords

Comments

The sum is Sum_{k>=0} 1/x_k^3, where x_k is the k-th zero of the digamma function, i.e., root of psi(x) = 0: x_0 = 1.461632... (A030169) is the only positive root, x_1 = -0.504083... (A175472), etc.

Examples

			-7.84898826280450630489883732716055067110164127911638...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[EulerGamma*Pi^2/2 + 4*Zeta[3]  + EulerGamma^3, 10, 100][[1]]

Formula

Equals -gamma*Pi^2/2 - 4*zeta(3) - gamma^3, where gamma is Euler's constant (A001620).

A248359 Least number k such that cos(Pi/k) + 1/(k*n) > 1.

Original entry on oeis.org

5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 79, 84, 89, 94, 99, 104, 109, 114, 119, 124, 129, 134, 139, 144, 149, 153, 158, 163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 213, 218, 223, 227, 232, 237, 242, 247, 252, 257, 262, 267, 272, 277
Offset: 1

Views

Author

Clark Kimberling, Oct 07 2014

Keywords

Comments

It appears that a(n+1) - a(n) is in {4,5} for n >= 1.
Lim_{n->infinity} a(n)/n = Pi^2/2 = 4.9348022..., but lim_{n->infinity} (a(n+1) - a(n)) does not exist; Pi^2/2 is only a mean value of these differences. - Vaclav Kotesovec, Oct 09 2014

Examples

			Taking n = 2, we have cos(Pi/9) + 1/(18) = 0.99524... < 1 < 1.0010565... = cos(Pi/10) + 1/(20), so that a(2) = 10, as corroborated for n = 2 in the following list of approximations:
n ... cos(Pi/a(n)) + 1/(n*a(n))
1 ... 1.009016994
2 ... 1.001056516
3 ... 1.000369823
4 ... 1.000188341
5 ... 1.000114701
6 ... 1.000077451
		

Crossrefs

Programs

  • Mathematica
    z = 800; f[n_] := f[n] = Select[Range[z], Cos[Pi/#] + 1/(#*n) > 1 &, 1];
    u = Flatten[Table[f[n], {n, 1, z}]]  (* A248359 *)
    Table[Floor[1/(1 - Cos[Pi/n])], {n, 1, z/10}]  (* A248360 *)
    Table[k=1; While[Cos[Pi/k]+1/(k*n)<=1,k++]; k,{n,1,100}] (* Vaclav Kotesovec, Oct 09 2014 *)

Formula

a(n) ~ n*Pi^2/2 = n*A102753. - Vaclav Kotesovec, Oct 09 2014

A222128 Decimal expansion of the real part of 1/i^Pi, where i=sqrt(-1).

Original entry on oeis.org

2, 2, 0, 5, 8, 4, 0, 4, 0, 7, 4, 9, 6, 9, 8, 0, 8, 8, 6, 6, 8, 9, 4, 5, 9, 1, 3, 2, 5, 5, 7, 8, 7, 5, 1, 0, 4, 5, 8, 8, 4, 8, 0, 3, 8, 1, 5, 9, 4, 1, 0, 6, 7, 2, 3, 7, 0, 0, 4, 8, 8, 7, 3, 2, 2, 4, 8, 3, 3, 5, 5, 1, 2, 5, 0, 5, 9, 5, 6, 3, 9, 7, 2, 7, 1, 1, 3
Offset: 0

Views

Author

Bruno Berselli, Feb 08 2013

Keywords

Comments

Also, decimal expansion of the real part of i^Pi.

Examples

			0.22058404074969808866894591325578751045884803815941067237004887322...
		

Crossrefs

Cf. A102753, A211883, A222129 (imaginary part of 1/i^Pi).

Programs

  • Mathematica
    RealDigits[Re[1/I^Pi], 10, 90][[1]] (* or *) RealDigits[Cos[Pi^2/2], 10, 90][[1]]
  • Maxima
    fpprec:90; ev(bfloat(realpart(1/%i^%pi)));

Formula

Equals cos(Pi^2/2).

A222129 Decimal expansion of the imaginary part of 1/i^Pi, where i=sqrt(-1).

Original entry on oeis.org

9, 7, 5, 3, 6, 7, 9, 7, 2, 0, 8, 3, 6, 3, 1, 3, 8, 5, 1, 5, 7, 4, 8, 2, 8, 7, 4, 1, 0, 8, 4, 9, 4, 7, 8, 8, 4, 7, 4, 0, 9, 6, 5, 1, 2, 3, 6, 3, 7, 7, 4, 9, 7, 2, 9, 8, 7, 0, 8, 8, 9, 9, 1, 1, 6, 1, 9, 2, 6, 0, 4, 5, 6, 8, 3, 3, 7, 4, 3, 2, 2, 1, 8, 0, 1, 6, 9
Offset: 0

Views

Author

Bruno Berselli, Feb 08 2013

Keywords

Comments

Also, decimal expansion of the imaginary part of -i^Pi.

Examples

			0.97536797208363138515748287410849478847409651236377497298708899116...
		

Crossrefs

Cf. A102753, A211884, A222128 (real part of 1/i^Pi).

Programs

  • Mathematica
    RealDigits[Im[1/I^Pi], 10, 90][[1]] (* or *) RealDigits[-Sin[Pi^2/2], 10, 90][[1]]
  • Maxima
    fpprec:90; ev(bfloat(imagpart(1/%i^%pi)));

Formula

Equals -sin(Pi^2/2).

A363876 Decimal expansion of the geometric mean of the isoperimetric quotient of ellipses when expressed in terms of their eccentricity.

Original entry on oeis.org

9, 1, 6, 8, 1, 6, 9, 2, 3, 3, 8, 2, 1, 6, 8, 2, 4, 8, 1, 7, 5, 4, 6, 2, 5, 3, 8, 5, 7, 2, 3, 7, 0, 4, 0, 4, 5, 6, 7, 3, 5, 3, 2, 9, 4, 9, 9, 3, 7, 3, 6, 2, 4, 4, 3, 3, 7, 8, 4, 0, 1, 6, 6, 5, 1, 9, 8, 9, 0, 1, 3, 8, 4, 8, 1, 5, 9, 1, 0, 1, 0, 3, 4, 9, 0, 0, 0, 4
Offset: 0

Views

Author

Tian Vlasic, Jun 25 2023

Keywords

Comments

The isoperimetric quotient of a curve is defined as Q = (4*Pi*A)/p^2, where A and p are the area and the perimeter of that curve respectively.
The isoperimetric quotient of an ellipse depends only on its eccentricity e in accordance to the formula Q = (Pi^2*sqrt(1-e^2))/(4*E(e)^2), where E() is the complete elliptic integral of the second kind.

Examples

			0.916816923382168248...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[Pi^2/2*Exp[-1 - 2*NIntegrate[Log[EllipticE[x^2]], {x, 0, 1}, WorkingPrecision -> 100]]]]

Formula

Equals ((Pi^2)/2) * exp(-1-2*Integral_{x=0..1} log(E(x)) dx).

A175295 Decimal expansion of the integral of cos(Pi*x)*log(x)/x^2 from x=1 to infinity.

Original entry on oeis.org

0, 2, 9, 9, 1, 3, 2, 0, 3, 9, 8, 3, 9, 3, 4, 9, 7, 8, 4, 3, 9, 3, 0, 1, 7, 9, 2, 2, 3, 5, 6, 2, 4, 5, 9, 0, 7, 6, 3, 8, 7, 8, 1, 8, 9, 4, 7, 7, 2, 1, 4, 3, 6, 8, 4, 2, 9, 2, 3, 2, 9, 4, 8, 8, 0, 6, 1, 3, 3, 0, 8, 5, 2, 3, 5, 1, 8, 3, 7, 6, 5, 3, 1, 7, 8, 7, 7, 5, 7, 8, 8, 2, 2, 6, 7, 1, 7, 8, 1, 1, 5, 4, 6, 8, 7
Offset: 0

Views

Author

R. J. Mathar, Mar 24 2010

Keywords

Examples

			0.02991320398393497843930179...
		

Programs

  • Maple
    evalf(1+Pi^2/2*( gamma+log(Pi)-1 ) -Pi^2*hypergeom([1/2,1/2,1], [3/2,3/2,3/2,2],-Pi^2/4)/2 ) ;
  • Mathematica
    Join[{0}, RealDigits[ N[1/2*(Pi^2*(-2*HypergeometricPFQ[{1/2, 1/2}, {3/2, 3/2, 3/2}, -Pi^2/4] + Log[Pi] + EulerGamma - 1) + 2*Pi*SinIntegral[Pi] - 2), 105]][[1]]] (* Jean-François Alcover, Nov 08 2012 *)
    Join[{0},RealDigits[NIntegrate[Cos[Pi*x] Log[x]/x^2,{x,1,\[Infinity]}, WorkingPrecision->1000],10,120][[1]]] (* Harvey P. Dale, Nov 01 2017 *)

Formula

1+ A102753*( A053510 -1 + A001620 - 3F4(1/2,1/2,1; 3/2,3/2,3/2,2 ; -A091476) ) .
Previous Showing 11-20 of 21 results. Next