cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 40 results. Next

A353391 Number of compositions of n that are empty, a singleton, or whose run-lengths are a subsequence that is already counted.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 1, 4, 5, 7, 9, 11, 15, 22, 38, 45, 87, 93
Offset: 0

Views

Author

Gus Wiseman, May 15 2022

Keywords

Examples

			The a(9) = 4 through a(14) = 15 compositions (A..E = 10..14):
  (9)       (A)       (B)       (C)       (D)       (E)
  (333)     (2233)    (141122)  (2244)    (161122)  (2255)
  (121122)  (3322)    (221123)  (4422)    (221125)  (5522)
  (221121)  (131122)  (221132)  (151122)  (221134)  (171122)
            (221131)  (221141)  (221124)  (221143)  (221126)
                      (231122)  (221142)  (221152)  (221135)
                      (321122)  (221151)  (221161)  (221153)
                                (241122)  (251122)  (221162)
                                (421122)  (341122)  (221171)
                                          (431122)  (261122)
                                          (521122)  (351122)
                                                    (531122)
                                                    (621122)
                                                    (122121122)
                                                    (221121221)
		

Crossrefs

The non-recursive version is A353390, ranked by A353402.
The non-recursive consecutive version is A353392, ranked by A353432.
The non-recursive reverse version is A353403.
The unordered version is A353426, ranked by A353393 (nonprime A353389).
The consecutive version is A353430.
These compositions are ranked by A353431.
A003242 counts anti-run compositions, ranked by A333489.
A011782 counts compositions.
A329738 counts uniform compositions, partitions A047966.
A114901 counts compositions with no runs of length 1.
A169942 counts Golomb rulers, ranked by A333222.
A325676 counts knapsack compositions, ranked by A333223.
A325705 counts partitions containing all of their distinct multiplicities.
A329739 counts compositions with all distinct run-length.

Programs

  • Mathematica
    yosQ[y_]:=Length[y]<=1||MemberQ[Subsets[y],Length/@Split[y]]&&yosQ[Length/@Split[y]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],yosQ]],{n,0,15}]

A353392 Number of compositions of n whose own run-lengths are a consecutive subsequence.

Original entry on oeis.org

1, 1, 0, 0, 1, 2, 2, 2, 2, 8, 12, 16, 20, 35, 46, 59, 81, 109, 144, 202, 282
Offset: 0

Views

Author

Gus Wiseman, May 15 2022

Keywords

Examples

			The a(0) = 0 through a(10) = 12 compositions (empty columns indicated by dots, 0 is the empty composition):
  0  1  .  .  22  122  1122  11221  21122  333     1333
                  221  2211  12211  22112  22113   2233
                                           22122   3322
                                           31122   3331
                                           121122  22114
                                           122112  41122
                                           211221  122113
                                           221121  131122
                                                   221131
                                                   311221
                                                   1211221
                                                   1221121
		

Crossrefs

The non-consecutive version for partitions is A325702.
The non-consecutive version is A353390, ranked by A353402.
The non-consecutive recursive version is A353391, ranked by A353431.
The non-consecutive reverse version is A353403.
The recursive version is A353430.
These compositions are ranked by A353432.
A003242 counts anti-run compositions, ranked by A333489.
A011782 counts compositions.
A169942 counts Golomb rulers, ranked by A333222.
A325676 counts knapsack compositions, ranked by A333223.
A329738 counts uniform compositions, partitions A047966.
A329739 counts compositions with all distinct run-lengths.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],#=={}||MemberQ[Join@@Table[Take[#,{i,j}],{i,Length[#]},{j,i,Length[#]}],Length/@Split[#]]&]],{n,0,15}]

A353403 Number of compositions of n whose own reversed run-lengths are a subsequence (not necessarily consecutive).

Original entry on oeis.org

1, 1, 0, 0, 3, 2, 5, 12, 16, 30, 45, 94, 159, 285, 477, 864, 1487, 2643
Offset: 0

Views

Author

Gus Wiseman, May 15 2022

Keywords

Examples

			The a(0) = 1 through a(7) = 12 compositions:
  ()  (1)  .  .  (22)   (1121)  (1113)  (1123)
                 (112)  (1211)  (1122)  (1132)
                 (211)          (1221)  (2311)
                                (2211)  (3211)
                                (3111)  (11131)
                                        (11212)
                                        (11221)
                                        (12112)
                                        (12211)
                                        (13111)
                                        (21121)
                                        (21211)
		

Crossrefs

The non-reversed version is A353390, ranked by A353402, partitions A325702.
The non-reversed recursive version is A353391, ranked by A353431.
The non-reversed consecutive case is A353392, ranked by A353432.
The non-reversed recursive consecutive version is A353430.
A003242 counts anti-run compositions, ranked by A333489.
A011782 counts compositions.
A169942 counts Golomb rulers, ranked by A333222.
A325676 counts knapsack compositions, ranked by A333223, partitions A108917.
A325705 counts partitions containing all of their distinct multiplicities.
A329739 counts compositions with all distinct run-lengths, for runs A351013.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@ IntegerPartitions[n],MemberQ[Subsets[#],Reverse[Length/@Split[#]]]&]],{n,0,15}]

A325678 Maximum length of a composition of n such that every restriction to a subinterval has a different sum.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
Offset: 0

Views

Author

Gus Wiseman, May 13 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
Also the maximum number of nonzero marks on a Golomb ruler of length n.

Crossrefs

Programs

  • Mathematica
    Table[Max[Length/@Select[Join@@Permutations/@IntegerPartitions[n],UnsameQ@@ReplaceList[#,{_,s__,_}:>Plus[s]]&]],{n,0,15}]

Formula

a(n) + 1 = A143824(n + 1).

A325788 Number of complete strict necklace compositions of n.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 2, 0, 0, 4, 4, 4, 4, 0, 20, 6, 16, 12, 10, 0, 84, 40, 74, 42, 66, 38, 22, 254, 238, 188, 356, 242, 272, 150, 148, 1140, 1058, 1208, 1546, 1288
Offset: 1

Views

Author

Gus Wiseman, May 22 2019

Keywords

Comments

A strict necklace composition of n is a finite sequence of distinct positive integers summing to n that is lexicographically minimal among all of its cyclic rotations. In other words, it is a strict composition of n starting with its least part (counted by A032153). A circular subsequence is a sequence of consecutive terms where the last and first parts are also considered consecutive. A necklace composition of n is complete if every positive integer from 1 to n is the sum of some circular subsequence.

Examples

			The a(1) = 1 through a(16) = 6 complete strict necklace compositions (empty columns not shown):
  (1)  (12)  (123)  (124)  (1234)  (1253)  (1245)  (1264)  (12345)  (12634)
             (132)  (142)  (1324)  (1325)  (1326)  (1327)  (12354)  (13624)
                           (1423)  (1352)  (1542)  (1462)  (12435)  (14263)
                           (1432)  (1523)  (1623)  (1723)  (12453)  (14326)
                                                           (12543)  (14362)
                                                           (13254)  (16234)
                                                           (13425)
                                                           (13452)
                                                           (13524)
                                                           (13542)
                                                           (14235)
                                                           (14253)
                                                           (14325)
                                                           (14523)
                                                           (14532)
                                                           (15234)
                                                           (15243)
                                                           (15324)
                                                           (15342)
                                                           (15432)
		

Crossrefs

Programs

  • Mathematica
    neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
    subalt[q_]:=Union[ReplaceList[q,{_,s__,_}:>{s}],DeleteCases[ReplaceList[q,{t___,,u___}:>{u,t}],{}]];
    Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&],neckQ[#]&&Union[Total/@subalt[#]]==Range[n]&]],{n,30}]

A325791 Number of necklace permutations of {1..n} such that every positive integer from 1 to n * (n + 1)/2 is the sum of some circular subsequence.

Original entry on oeis.org

1, 1, 1, 2, 4, 20, 82, 252, 1074, 7912, 39552, 152680, 776094, 5550310, 30026848, 108376910
Offset: 0

Views

Author

Gus Wiseman, May 23 2019

Keywords

Comments

A necklace permutation is a permutation that is either empty or whose first part is the minimum. A circular subsequence is a sequence of consecutive terms where the last and first parts are also considered consecutive. The only circular subsequence of maximum length is the sequence itself, not any rotation of it. For example, the circular subsequences of (1,3,2) are: (), (1), (2), (3), (1,3), (2,1), (3,2), (1,3,2).

Examples

			The a(1) = 1 through a(5) = 20 permutations:
  (1)  (1,2)  (1,2,3)  (1,2,3,4)  (1,2,3,4,5)
              (1,3,2)  (1,3,2,4)  (1,2,3,5,4)
                       (1,4,2,3)  (1,2,4,3,5)
                       (1,4,3,2)  (1,2,4,5,3)
                                  (1,2,5,4,3)
                                  (1,3,2,5,4)
                                  (1,3,4,2,5)
                                  (1,3,4,5,2)
                                  (1,3,5,2,4)
                                  (1,3,5,4,2)
                                  (1,4,2,3,5)
                                  (1,4,2,5,3)
                                  (1,4,3,2,5)
                                  (1,4,5,2,3)
                                  (1,4,5,3,2)
                                  (1,5,2,3,4)
                                  (1,5,2,4,3)
                                  (1,5,3,2,4)
                                  (1,5,3,4,2)
                                  (1,5,4,3,2)
		

Crossrefs

Programs

  • Mathematica
    subalt[q_]:=Union[ReplaceList[q,{_,s__,_}:>{s}],DeleteCases[ReplaceList[q,{t___,,u___}:>{u,t}],{}]];
    Table[Length[Select[Permutations[Range[n]],#=={}||First[#]==1&&Range[n*(n+1)/2]==Union[Total/@subalt[#]]&]],{n,0,5}]

Extensions

a(11)-a(15) from Bert Dobbelaere, Nov 01 2020

A353430 Number of integer compositions of n that are empty, a singleton, or whose own run-lengths are a consecutive subsequence that is already counted.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 1, 4, 5, 7, 9, 11, 15, 16, 22, 25, 37, 37, 45
Offset: 0

Views

Author

Gus Wiseman, May 16 2022

Keywords

Examples

			The a(n) compositions for selected n (A..E = 10..14):
  n=4:  n=6:    n=9:      n=10:     n=12:     n=14:
-----------------------------------------------------------
  (4)   (6)     (9)       (A)       (C)       (E)
  (22)  (1122)  (333)     (2233)    (2244)    (2255)
        (2211)  (121122)  (3322)    (4422)    (5522)
                (221121)  (131122)  (151122)  (171122)
                          (221131)  (221124)  (221126)
                                    (221142)  (221135)
                                    (221151)  (221153)
                                    (241122)  (221162)
                                    (421122)  (221171)
                                              (261122)
                                              (351122)
                                              (531122)
                                              (621122)
                                              (122121122)
                                              (221121221)
		

Crossrefs

Non-recursive non-consecutive version: counted by A353390, ranked by A353402, reverse A353403, partitions A325702.
Non-consecutive version: A353391, ranked by A353431, partitions A353426.
Non-recursive version: A353392, ranked by A353432.
A003242 counts anti-run compositions, ranked by A333489.
A011782 counts compositions.
A114901 counts compositions with no runs of length 1.
A169942 counts Golomb rulers, ranked by A333222.
A325676 counts knapsack compositions, ranked by A333223.
A329738 counts uniform compositions, partitions A047966.
A329739 counts compositions with all distinct run-lengths.

Programs

  • Mathematica
    yoyQ[y_]:=Length[y]<=1||MemberQ[Join@@Table[Take[y,{i,j}],{i,Length[y]},{j,i,Length[y]}],Length/@Split[y]]&&yoyQ[Length/@Split[y]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],yoyQ]],{n,0,15}]

A325790 Number of permutations of {1..n} such that every positive integer from 1 to n * (n + 1)/2 is the sum of some circular subsequence.

Original entry on oeis.org

1, 1, 2, 6, 16, 100, 492, 1764, 8592, 71208, 395520, 1679480, 9313128, 72154030, 420375872, 1625653650
Offset: 0

Views

Author

Gus Wiseman, May 23 2019

Keywords

Comments

A circular subsequence is a sequence of consecutive non-overlapping terms where the last and first parts are also considered consecutive. The only circular subsequence of maximum length is the sequence itself (not any rotation of it). For example, the circular subsequences of (2,1,3) are: (), (1), (2), (3), (1,3), (2,1), (3,2), (2,1,3).

Examples

			The a(1) = 1 through a(4) = 16 permutations:
  (1)  (1,2)  (1,2,3)  (1,2,3,4)
       (2,1)  (1,3,2)  (1,3,2,4)
              (2,1,3)  (1,4,2,3)
              (2,3,1)  (1,4,3,2)
              (3,1,2)  (2,1,4,3)
              (3,2,1)  (2,3,1,4)
                       (2,3,4,1)
                       (2,4,1,3)
                       (3,1,4,2)
                       (3,2,1,4)
                       (3,2,4,1)
                       (3,4,1,2)
                       (4,1,2,3)
                       (4,1,3,2)
                       (4,2,3,1)
                       (4,3,2,1)
		

Crossrefs

Programs

  • Mathematica
    subalt[q_]:=Union[ReplaceList[q,{_,s__,_}:>{s}],DeleteCases[ReplaceList[q,{t___,,u___}:>{u,t}],{}]];
    Table[Length[Select[Permutations[Range[n]],Range[n*(n+1)/2]==Union[Total/@subalt[#]]&]],{n,0,5}]
  • PARI
    weigh(p)={my(b=0); for(i=1, #p, my(s=0,j=i); for(k=1, #p, s+=p[j]; if(!bittest(b,s), b=bitor(b,1<Andrew Howroyd, Aug 16 2019

Extensions

a(10)-a(12) from Andrew Howroyd, Aug 18 2019
a(13)-a(15) from Bert Dobbelaere, Nov 01 2020

A325988 Number of covering (or complete) factorizations of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, May 30 2019

Keywords

Comments

First differs from A072911 at a(64) = 5, A072911(64) = 4.
A covering factorization of n is an orderless factorization of n into factors > 1 such that every divisor of n is the product of some submultiset of the factors.

Examples

			The a(64) = 5 factorizations:
  (2*2*2*2*2*2)
  (2*2*2*2*4)
  (2*2*2*8)
  (2*2*4*4)
  (2*4*8)
The a(96) = 4 factorizations:
  (2*2*2*2*2*3)
  (2*2*2*3*4)
  (2*2*3*8)
  (2*3*4*4)
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Union[Times@@@Subsets[#]]==Divisors[n]&]],{n,100}]

Formula

a(2^n) = A126796(n).

A325763 Heinz numbers of integer partitions whose consecutive subsequence-sums cover an initial interval of positive integers.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 32, 36, 40, 48, 54, 56, 60, 64, 72, 80, 96, 100, 108, 112, 120, 128, 144, 160, 162, 168, 176, 180, 192, 200, 216, 224, 240, 256, 280, 288, 300, 320, 324, 336, 352, 360, 384, 392, 400, 416, 432, 448, 480, 486, 500, 504, 512
Offset: 1

Views

Author

Gus Wiseman, May 19 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The enumeration of these partitions by sum appears to be A002865.

Examples

			The sequence of terms together with their prime indices begins:
     1: {}
     2: {1}
     4: {1,1}
     6: {1,2}
     8: {1,1,1}
    12: {1,1,2}
    16: {1,1,1,1}
    18: {1,2,2}
    20: {1,1,3}
    24: {1,1,1,2}
    32: {1,1,1,1,1}
    36: {1,1,2,2}
    40: {1,1,1,3}
    48: {1,1,1,1,2}
    54: {1,2,2,2}
    56: {1,1,1,4}
    60: {1,1,2,3}
    64: {1,1,1,1,1,1}
    72: {1,1,1,2,2}
    80: {1,1,1,1,3}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Range[Total[primeMS[#]]]==Union[ReplaceList[primeMS[#],{_,s__,_}:>Plus[s]]]&]
Previous Showing 21-30 of 40 results. Next