cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A286653 Square array A(n,k), n>=0, k>=1, read by antidiagonals, where column k is the expansion of Product_{j>=1} (1 - x^(k*j))/(1 - x^j).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 2, 0, 1, 1, 2, 2, 2, 0, 1, 1, 2, 3, 4, 3, 0, 1, 1, 2, 3, 4, 5, 4, 0, 1, 1, 2, 3, 5, 6, 7, 5, 0, 1, 1, 2, 3, 5, 6, 9, 9, 6, 0, 1, 1, 2, 3, 5, 7, 10, 12, 13, 8, 0, 1, 1, 2, 3, 5, 7, 10, 13, 16, 16, 10, 0, 1, 1, 2, 3, 5, 7, 11, 14, 19, 22, 22, 12, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, May 11 2017

Keywords

Comments

A(n,k) is the number of partitions of n in which no parts are multiples of k.
A(n,k) is also the number of partitions of n into at most k-1 copies of each part.

Examples

			Square array begins:
  1,  1,  1,  1,  1,  1,  ...
  0,  1,  1,  1,  1,  1,  ...
  0,  1,  2,  2,  2,  2,  ...
  0,  2,  2,  3,  3,  3,  ...
  0,  2,  4,  4,  5,  5,  ...
  0,  3,  5,  6,  6,  7,  ...
		

Crossrefs

Main diagonal gives A000041.
Mirror of A061198.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, [1, 0], `if`(k*i*(i+1)/2[0, l[1]*j]+l)(b(n-i*j, i-1, k)), j=0..min(n/i, k))))
        end:
    A:= (n, k)-> b(n$2, k-1)[1]:
    seq(seq(A(n, 1+d-n), n=0..d), d=0..16);  # Alois P. Heinz, Oct 17 2018
  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[(1 - x^(i k))/(1 - x^i), {i, Infinity}], {x, 0, n}]][j - n + 1], {j, 0, 12}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[QPochhammer[x^k, x^k]/QPochhammer[x, x], {x, 0, n}]][j - n + 1], {j, 0, 12}, {n, 0, j}] // Flatten

Formula

G.f. of column k: Product_{j>=1} (1 - x^(k*j))/(1 - x^j).

A121589 Series expansion of (eta(q^9) / eta(q))^3 in powers of q.

Original entry on oeis.org

1, 3, 9, 22, 51, 108, 221, 429, 810, 1476, 2631, 4572, 7802, 13056, 21519, 34918, 55935, 88452, 138332, 213990, 327852, 497592, 748833, 1117692, 1655719, 2434938, 3556791, 5161808, 7445631, 10677096, 15226658, 21599469, 30485268, 42817788
Offset: 1

Views

Author

Michael Somos, Aug 09 2006

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = q + 3*q^2 + 9*q^3 + 22*q^4 + 51*q^5 + 108*q^6 + 221*q^7 + 429*q^8 + ...
		

Crossrefs

Programs

  • Maple
    N:= 100: # to get a(1)..a(N)
    S:= series(q*Product(1-q^(9*k),k=1..N/9)/Product((1-q^k)^3, k=1..N),q,N+1):
    seq(coeff(S,q,n),n=1..N); # Robert Israel, Nov 02 2017
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1-x^(9*k))/(1-x^k))^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 07 2015 *)
    QP = QPochhammer; s = (QP[q^9]/QP[q])^3 + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 30 2015, adapted from PARI *)
    a[ n_] := SeriesCoefficient[ q (QPochhammer[ q^9] / QPochhammer[ q])^3, {q, 0, n}]; (* Michael Somos, Nov 02 2017 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^9 + A) / eta(x + A))^3, n))};

Formula

Euler transform of period 9 sequence [3, 3, 3, 3, 3, 3, 3, 3, 0, ...].
G.f.: x * (Product_{k>0} (1 - x^(9*k) / (1 - x^k))^3.
Expansion of c(q^3) / (3 * b(q)) = (c(q) / (3 * b(q^3))^3 in powers of q where b(), c() are cubic AGM functions.
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (u - v^2) * (u^2 - v) - 2 * u * v * ( 3 * (u + v) + 13 * u * v ).
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = u^3 - v * (1 + 9 * v + 27 * v^2) * (1 + 9 * u + 27 * u^2).
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1 * u2 - (1 + 3 * (u1 + u2)) * (u3 + u6 + 9 * u3 * u6).
G.f. is a period 1 Fourier series which satisfies f(-1 / (9 t)) = (1/27) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A131986.
a(n) ~ exp(4*Pi*sqrt(n)/3) / (27 * sqrt(6) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2015
a(1) = 1, a(n) = (3/(n-1))*Sum_{k=1..n-1} A116607(k)*a(n-k) for n > 1. - Seiichi Manyama, Apr 01 2017
Convolution inverse of A131986. Convolution cube of A104502. - Michael Somos, Nov 02 2017

Extensions

Second formula corrected by Vaclav Kotesovec, Sep 07 2015

A104501 Coefficients of the A-Dyson Mod 27 identity.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 76, 100, 133, 172, 225, 288, 371, 470, 598, 751, 945, 1177, 1468, 1815, 2245, 2757, 3386, 4133, 5043, 6121, 7425, 8966, 10818, 13001, 15610, 18677, 22324, 26600, 31662, 37582, 44560, 52701, 62261, 73387, 86406
Offset: 0

Views

Author

Eric W. Weisstein, Mar 11 2005

Keywords

Examples

			1 +q +2*q^2 +3*q^3 +5*q^4 +7*q^5 +11*q^6 +15*q^7 +22*q^8 +30*q^9 +...
		

Crossrefs

Programs

  • Mathematica
    QP = QPochhammer; (QP[1/x^15, x^27]*QP[1/x^12, x^27]*QP[x^27])/((1-1/x^15)* (1-1/x^12)*QP[x]) + O[x]^50 // CoefficientList[#, x]& (* Jean-François Alcover, Nov 18 2017 *)
  • PARI
    {a(n)=local(m); if(n<0, 0, m=sqrtint(24*n+1); polcoeff( sum(k= -((m-1)\18), (m+1)\18, (-1)^k*x^((9*k^2-k)*3/2),x*O(x^n))/ eta(x+x*O(x^n)), n))} /* Michael Somos, Mar 15 2006 */
    
  • PARI
    {a(n)=if(n<0, 0, polcoeff( sum(k=1, sqrtint(n), x^k^2* prod(j=1, k-1, (1-x^(3*j))/(1-x^(j+1))/(1-x^(2*j))/(1-x^(2*j+1)), 1+O(x^(n-k^2+1)))/(1-x)^2, 1), n))} /* Michael Somos, Mar 15 2006 */
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = eta(x + x*O(x^n)) ; polcoeff( sum(k=0, n, (k%3==0) * polcoeff(A, k) * x^k) / A, n))} /* Michael Somos, Sep 29 2007 */

Formula

Expansion of f(-q^12,-q^15)/f(-q,-q^2) in powers of q where f() is Ramanujan's theta function.
Given A=A0+A1+A2+A3+A4 is the 5-section, then 0= A1^2*A4^2 +2*A2^2*A3^2 -A1*A3^3 -A4*A2^3 -A1*A2*A3*A4.
G.f.: Product_{k>0} (1-x^(27k))(1-x^(27k-12))(1-x^(27k-15))/(1-x^k).
G.f.: 1+ Sum_{k>0} x^k^2 ( Product_{j=1..k-1} 1-x^(3j) )/( (Product_{j=1..2k-1} (1-x^j)) (Product_{j=1..k}(1-x^j)) ).
A104501(n) = A104503(n-1) + A104504(n-2) unless n=0. - Michael Somos, Sep 29 2007

Extensions

Edited by Michael Somos, Mar 15 2006

A104503 Coefficients of the C-Dyson Mod 27 identity.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 14, 20, 27, 37, 49, 66, 86, 113, 146, 189, 241, 308, 389, 492, 615, 770, 956, 1187, 1463, 1802, 2207, 2701, 3288, 3999, 4842, 5857, 7056, 8491, 10183, 12197, 14564, 17369, 20658, 24539, 29075, 34408, 40627, 47912, 56385, 66277
Offset: 0

Views

Author

Eric W. Weisstein, Mar 11 2005

Keywords

Examples

			1 + q + 2*q^2 + 3*q^3 + 5*q^4 + 7*q^5 + 10*q^6 + 14*q^7 + 20*q^8 + 27*q^9 + ...
		

Crossrefs

Programs

  • Mathematica
    QP := QPochhammer; f[x_, y_] := QP[-x, x*y]*QP[-y, x*y]*QP[x*y, x*y]; a[n_]:= SeriesCoefficient[f[-q^12, -q^15]/f[-q, -q^2], {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Apr 08 2018 *)
  • PARI
    {a(n)=local(m); if(n<0, 0, m=sqrtint(24*n+25); polcoeff( sum(k= -((m-5)\18), (m+5)\18, (-1)^k*x^((9*k^2-5*k)*3/2),x*O(x^n))/ eta(x+x*O(x^n)), n))} /* Michael Somos, Mar 15 2006 */
    
  • PARI
    {a(n)=if(n<1, n==0, polcoeff( sum(k=0, sqrtint(n+1)-1, x^(k^2+2*k)* prod(j=1, k, (1-x^(3*j))/(1-x^j)/(1-x^(2*j+1))/(1-x^(2*j+2)), 1+O(x^(n-k^2-2*k+1)))/(1-x)/(1-x^2) ), n))} /* Michael Somos, Mar 15 2006 */
    
  • PARI
    {a(n) = local(A); if( n<0, 0, n++; A = eta(x + x*O(x^n)) ; polcoeff( - sum(k=0, n, (k%3==1) * polcoeff(A, k) * x^k) / A, n))} /* Michael Somos, Sep 29 2007 */

Formula

Expansion of f(-q^6,-q^21)/f(-q,-q^2) in powers of q where f() is Ramanujan's theta function.
Given A=A0+A1+A2+A3+A4 is the 5-section, then 0= A0^2*A3^2 +2*A1^2*A2^2 -A0*A2^3 -A3*A1^3 -A0*A1*A2*A3.
G.f.: Product_{k>0} (1-x^(27k))(1-x^(27k-6))(1-x^(27k-21))/(1-x^k).
G.f.: Sum_{k>0} x^(k^2+2k) ( Product_{j=1..k} 1-x^(3j) )/ ( (Product_{j=1..2k+2} (1-x^j)) (Product_{j=1..k}(1-x^j)) ).
A104501(n) = A104503(n-1) + A104504(n-2) unless n=0. - Michael Somos, Sep 29 2007

A104504 Coefficients of the D-Dyson mod 27 identity.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 8, 10, 15, 19, 27, 34, 47, 59, 79, 99, 130, 162, 209, 259, 330, 407, 512, 628, 782, 955, 1179, 1432, 1755, 2122, 2583, 3109, 3762, 4510, 5427, 6480, 7760, 9231, 11004, 13043, 15485, 18293, 21634, 25475, 30021, 35245, 41396, 48459, 56740
Offset: 0

Views

Author

Eric W. Weisstein, Mar 11 2005

Keywords

Examples

			1 + q + 2*q^2 + 2*q^3 + 4*q^4 + 5*q^5 + 8*q^6 + 10*q^7 + 15*q^8 + 19*q^9 + ...
		

Crossrefs

Programs

  • Mathematica
    QP := QPochhammer; f[x_, y_] := QP[-x, x*y]*QP[-y, x*y]*QP[x*y, x*y];
    a[n_] := SeriesCoefficient[f[-q^3, -q^24]/f[-q, -q^2], {q, 0, n}]; Table[a[n], {n,0,50}] (* G. C. Greubel, Apr 08 2018 *)
  • PARI
    {a(n)=local(m); if(n<0, 0, m=sqrtint(24*n+49); polcoeff( sum(k= -((m-7)\18), (m+7)\18, (-1)^k*x^((9*k^2-7*k)*3/2),x*O(x^n))/ eta(x+x*O(x^n)), n))} /* Michael Somos, Mar 15 2006 */
    
  • PARI
    {a(n)=if(n<1, n==0, polcoeff( sum(k=0, sqrtint(n+1)-1, x^(k^2+3*k)* prod(j=1, k, (1-x^(3*j))/(1-x^j)/(1-x^(2*j+1))/(1-x^(2*j+2)), 1+O(x^(n-k^2-2*k+1)))/(1-x)/(1-x^2) ), n))} /* Michael Somos, Mar 15 2006 */
    
  • PARI
    {a(n) = local(A); if( n<0, 0, n+=2; A = eta(x + x*O(x^n)) ; polcoeff( - sum(k=0, n, (k%3==2) * polcoeff(A, k) * x^k) / A, n))} /* Michael Somos, Sep 29 2007 */

Formula

Expansion of f(-q^3,-q^24)/f(-q,-q^2) in powers of q where f() is Ramanujan's theta function.
Given A=A0+A1+A2+A3+A4 is the 5-section, then 0= 2*A0^2*A1^2 +A2^2*A4^2 -A2*A0^3 -A4*A1^3 -A0*A1*A2*A4.
G.f.: Product_{k>0} (1-x^(27k))(1-x^(27k-3))(1-x^(27k-24))/(1-x^k).
G.f.: Sum_{k>0} x^(k^2+3k) ( Product_{j=1..k} 1-x^(3j) )/ ( (Product_{j=1..2k+2} (1-x^j)) (Product_{j=1..k}(1-x^j)) ).
A104501(n) = A104503(n-1) + A104504(n-2) unless n=0. - Michael Somos, Sep 29 2007

Extensions

Edited by Michael Somos, Mar 15 2006

A213598 Number of partitions of n in which no parts are multiples of 49.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1958, 2436, 3010, 3718, 4565, 5604, 6842, 8349, 10143, 12310, 14883, 17977, 21637, 26015, 31185, 37338, 44583, 53174, 63261, 75175, 89134, 105558, 124754, 147273, 173524
Offset: 0

Views

Author

Michael Somos, Jun 14 2012

Keywords

Comments

For n<49 we have a(n)=A000041(n), for n>=49 a(n)!=A000041(n).
In Fricke page 401, he gives the expansion sigma(omega) = q^4 + q^6 + 2q^8 + 3q^10 + 5q^12 + 7q^14 + 11q^16 + 15q^18 + ... where q = exp( Pi i omega).

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + ...
G.f. = q^2 + q^3 + 2*q^4 + 3*q^5 + 5*q^6 + 7*q^7 + 11*q^8 + 15*q^9 + 22*q^10 + ...
		

References

  • R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Teubner, 1922, Vol. 2, see p. 401. Eq. (49)

Crossrefs

Cf. A000009 (m=2), A000726 (m=3), A001935 (m=4), A035959 (m=5), A219601 (m=6), A035985 (m=7), A261775 (m=8), A104502 (m=9), A261776 (m=10), A092885 (m=25), this sequence (m=49).

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ Product[ 1 - x^k, {k, 49, n, 49}] / Product[ 1 - x^k, {k, n}], {x, 0, n}];
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^49] / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, May 13 2014 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^49 + A) / eta(x + A), n))};

Formula

Expansion of q^(-2) * eta(q^49) / eta(q) in powers of q.
Euler transform of period 49 sequence [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, ...].
Given g.f. A(x) then B(x) = x^2 * A(x) satisfies 0 = f(B(x), B(x^2),
B(x^4)) where f(u, v, w) = u * v * w * (1 - 7*v^2) - (v - w) * (u - v) * (v^2 - u*w).
G.f. is a period 1 Fourier series which satisfies f(-1 / (49 t)) = 1 / (7 f(t)) where q = exp(2 Pi i t).
G.f.: Product_{k>0} (1 - x^(49*k)) / (1 - x^k).
a(n) ~ exp(4*Pi*sqrt(2*n)/7) / (2^(1/4) * 7^(3/2) * n^(3/4)). - Vaclav Kotesovec, Oct 14 2015
a(n) = (1/n)*Sum_{k=1..n} A287926(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Jun 16 2017

A320611 Number of parts in all partitions of n in which no part occurs more than eight times.

Original entry on oeis.org

1, 3, 6, 12, 20, 35, 54, 86, 119, 182, 254, 366, 499, 697, 934, 1274, 1681, 2237, 2918, 3830, 4927, 6377, 8128, 10388, 13120, 16600, 20796, 26076, 32419, 40318, 49798, 61494, 75464, 92582, 112990, 137800, 167284, 202912, 245128, 295870, 355813, 427472, 511926
Offset: 1

Views

Author

Alois P. Heinz, Oct 17 2018

Keywords

Crossrefs

Column k=8 of A210485.
Cf. A104502.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(4*i*(i+1) [0, l[1]*j]+l)(b(n-i*j, min(n-i*j, i-1))), j=0..min(n/i, 8))))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=1..50);
  • Mathematica
    Table[Length[Flatten[Select[IntegerPartitions[n], Max[Tally[#][[All, 2]]] <= 8 &]]], {n, 43}] (* Robert Price, Jul 31 2020 *)

Formula

a(n) ~ log(3) * exp(4*Pi*sqrt(n/3)/3) / (Pi * sqrt(2) * 3^(1/4) * n^(1/4)). - Vaclav Kotesovec, Oct 18 2018
Previous Showing 11-17 of 17 results.