cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A277531 Decimal expansion of the tenth derivative of the infinite power tower function x^x^x... at x = 1/2, negated.

Original entry on oeis.org

1, 4, 1, 0, 9, 5, 0, 8, 6, 0, 4, 5, 7, 8, 2, 5, 2, 1, 6, 6, 7, 4, 8, 0, 7, 9, 5, 6, 6, 6, 2, 1, 3, 8, 6, 1, 1, 5, 9, 2, 7, 6, 0, 7, 4, 9, 5, 2, 5, 0, 6, 8, 9, 5, 9, 1, 6, 1, 0, 1, 8, 4, 7, 0, 8, 2, 4, 0, 0, 4, 4, 5, 8, 4, 4, 8, 8, 7, 2, 4, 0, 0, 8, 9, 3, 2, 4, 1, 1, 6, 2, 1, 3, 3, 3, 3, 4, 9, 8, 0, 6, 7, 0, 5, 3
Offset: 8

Views

Author

Alois P. Heinz, Oct 19 2016

Keywords

Examples

			-14109508.6045782521667480795666213861159276...
		

Crossrefs

Programs

  • Mathematica
    f[x_] := -ProductLog[-Log[x]]/Log[x]; RealDigits[Derivative[10][f][1/2], 10, 120][[1]] (* Amiram Eldar, May 23 2023 *)

A103549 Decimal expansion of solution to x*3^x = 1.

Original entry on oeis.org

5, 4, 7, 8, 0, 8, 6, 2, 1, 6, 5, 4, 0, 9, 7, 4, 4, 6, 4, 5, 0, 5, 7, 5, 4, 0, 8, 1, 5, 1, 0, 2, 1, 8, 5, 0, 3, 4, 5, 9, 8, 9, 3, 3, 7, 7, 0, 1, 4, 8, 9, 0, 6, 7, 2, 9, 3, 7, 2, 9, 4, 5, 5, 0, 0, 0, 7, 2, 6, 3, 5, 8, 5, 9, 0, 0, 0, 7, 6, 8, 0, 5, 0, 1, 2, 6, 5, 0, 6, 4, 7, 6, 1, 9, 0, 3, 8, 1, 9, 1, 9, 9, 3, 1, 0
Offset: 0

Views

Author

Zak Seidov, Mar 23 2005

Keywords

Examples

			0.54780862165409744645057540815102185034598933770148...
		

Crossrefs

Programs

  • Maple
    x:= LambertW(log(3))/log(3):
    s:= convert(evalf(x, 140), string):
    seq(parse(s[n+2]), n=0..119);  # Alois P. Heinz, Dec 03 2014
  • Mathematica
    RealDigits[x/.FindRoot[x 3^x==1,{x,.5},WorkingPrecision->120]][[1]] (* Harvey P. Dale, May 27 2012 *)
    RealDigits[ProductLog[Log[3]]/Log[3], 10, 105][[1]] (* Amiram Eldar, May 04 2023 *)

Formula

x*3^x = 1.
x = (1/3)^(1/3)^(1/3)^... = LambertW(log(3))/log(3). - Alois P. Heinz, Dec 03 2014

Extensions

More terms from Harvey P. Dale, May 27 2012

A103552 Decimal expansion of solution to x*7^x = 1.

Original entry on oeis.org

4, 3, 1, 6, 9, 4, 1, 2, 6, 4, 9, 5, 8, 7, 8, 0, 1, 0, 4, 2, 6, 1, 6, 7, 0, 9, 8, 9, 1, 6, 3, 5, 1, 6, 8, 1, 9, 4, 5, 9, 0, 1, 8, 1, 2, 6, 4, 6, 4, 2, 2, 1, 9, 7, 5, 6, 5, 9, 2, 2, 9, 7, 4, 6, 7, 8, 0, 2, 3, 3, 2, 5, 2, 4, 3, 9, 4, 5, 6, 8, 8, 2, 3, 0, 3, 6, 5, 0, 0, 9, 8, 3, 8, 6, 0, 9, 8, 8, 6, 3, 4, 9, 0, 0, 1, 0
Offset: 0

Views

Author

Zak Seidov, Mar 23 2005

Keywords

Examples

			0.43169412649587801042616709891635168194590181264642...
		

Crossrefs

Programs

  • Maple
    x:= LambertW(log(7))/log(7):
    s:= convert(evalf(x, 140), string):
    seq(parse(s[n+2]), n=0..119);  # Alois P. Heinz, Dec 03 2014
  • Mathematica
    RealDigits[ProductLog[Log[7]]/Log[7], 10, 105][[1]] (* Amiram Eldar, May 04 2023 *)

Formula

x*7^x = 1.
x = (1/7)^(1/7)^(1/7)^... = LambertW(log(7))/log(7). - Alois P. Heinz, Dec 03 2014

Extensions

More terms from Alois P. Heinz, Dec 03 2014

A103551 Decimal expansion of solution to x*6^x = 1.

Original entry on oeis.org

4, 4, 8, 0, 6, 3, 0, 7, 6, 6, 4, 6, 3, 0, 8, 8, 4, 5, 1, 1, 3, 7, 1, 4, 4, 1, 8, 4, 2, 8, 5, 7, 1, 5, 4, 6, 6, 7, 5, 6, 2, 0, 3, 3, 0, 0, 5, 4, 1, 4, 7, 6, 5, 0, 1, 4, 8, 8, 7, 5, 5, 5, 8, 2, 5, 4, 7, 6, 0, 6, 4, 2, 6, 2, 3, 4, 5, 4, 9, 7, 8, 2, 0, 8, 4, 6, 6, 1, 5, 1, 3, 8, 4, 4, 6, 3, 2, 9, 9, 2, 8, 5, 1, 6, 8
Offset: 0

Views

Author

Zak Seidov, Mar 23 2005

Keywords

Examples

			0.44806307664630884511371441842857154667562033005414...
		

Crossrefs

Programs

  • Maple
    x:= LambertW(log(6))/log(6):
    s:= convert(evalf(x, 140), string):
    seq(parse(s[n+2]), n=0..120);  # Alois P. Heinz, Dec 03 2014
  • Mathematica
    RealDigits[ProductLog[Log[6]]/Log[6], 10, 105][[1]] (* Amiram Eldar, May 04 2023 *)

Formula

x*6^x = 1.
x = (1/6)^(1/6)^(1/6)^... = LambertW(log(6))/log(6). - Alois P. Heinz, Dec 03 2014

Extensions

More terms from Alois P. Heinz, Dec 03 2014

A103553 Decimal expansion of solution to x*8^x = 1.

Original entry on oeis.org

4, 1, 8, 6, 8, 6, 2, 1, 9, 7, 9, 7, 2, 4, 8, 4, 1, 2, 6, 7, 4, 7, 2, 2, 4, 8, 7, 4, 4, 7, 3, 7, 7, 9, 0, 3, 7, 0, 4, 4, 4, 5, 6, 7, 3, 3, 6, 3, 2, 1, 8, 6, 2, 1, 4, 5, 2, 1, 0, 0, 2, 1, 1, 8, 8, 6, 3, 4, 9, 1, 7, 2, 0, 5, 3, 1, 4, 5, 2, 0, 9, 1, 0, 6, 0, 6, 1, 0, 1, 2, 7, 9, 2, 1, 5, 5, 5, 4, 7, 3, 9, 6, 1, 2, 3
Offset: 0

Views

Author

Zak Seidov, Mar 23 2005

Keywords

Examples

			0.41868621979724841267472248744737790370444567336321...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[x/.FindRoot[x 8^x==1, {x,.4}, WorkingPrecision->100]][[1]] (* Harvey P. Dale, Jan 04 2011 *)
    RealDigits[ProductLog[Log[8]]/Log[8], 10, 105][[1]] (* Amiram Eldar, May 04 2023 *)

Formula

x*8^x = 1.
x = (1/8)^(1/8)^(1/8)^... = LambertW(log(8))/log(8). - Alois P. Heinz, Oct 25 2016

Extensions

More terms from Harvey P. Dale, Jan 04 2011

A103554 Decimal expansion of solution to x*9^x = 1.

Original entry on oeis.org

4, 0, 8, 0, 0, 4, 4, 0, 5, 3, 7, 4, 3, 8, 1, 0, 0, 7, 9, 7, 7, 8, 0, 0, 5, 3, 1, 4, 4, 0, 0, 9, 9, 0, 1, 2, 1, 5, 0, 4, 5, 1, 4, 1, 6, 9, 0, 7, 6, 0, 7, 5, 4, 7, 9, 6, 0, 6, 4, 5, 7, 8, 6, 4, 5, 0, 5, 7, 3, 7, 0, 4, 2, 6, 6, 9, 3, 6, 6, 3, 2, 7, 4, 3, 8, 2, 6, 4, 5, 0, 6, 3, 6, 2, 9, 3, 7, 9, 6, 4, 7, 5, 7, 4, 7, 1
Offset: 0

Views

Author

Zak Seidov, Mar 23 2005

Keywords

Examples

			0.40800440537438100797780053144009901215045141690760...
		

Crossrefs

Programs

  • Maple
    x:= LambertW(log(9))/log(9):
    s:= convert(evalf(x, 140), string):
    seq(parse(s[n+2]), n=0..121);  # Alois P. Heinz, Dec 03 2014
  • Mathematica
    RealDigits[ProductLog[Log[9]]/Log[9], 10, 105][[1]] (* Amiram Eldar, May 04 2023 *)

Formula

x*9^x = 1.
x = (1/9)^(1/9)^(1/9)^... = LambertW(log(9))/log(9). - Alois P. Heinz, Dec 03 2014

Extensions

More terms from Alois P. Heinz, Dec 03 2014

A103556 Decimal expansion of solution to x*11^x = 1.

Original entry on oeis.org

3, 9, 1, 2, 9, 6, 8, 3, 6, 4, 7, 6, 5, 7, 6, 6, 8, 7, 3, 6, 4, 5, 3, 3, 4, 6, 4, 3, 3, 6, 8, 6, 8, 9, 0, 9, 6, 5, 2, 6, 6, 7, 7, 5, 4, 9, 8, 1, 9, 8, 7, 7, 8, 3, 3, 4, 4, 8, 7, 2, 4, 3, 0, 5, 4, 5, 1, 6, 5, 2, 2, 8, 9, 0, 9, 8, 0, 8, 6, 4, 0, 1, 2, 4, 8, 1, 6, 3, 9, 6, 1, 7, 6, 6, 9, 0, 4, 2, 7, 1, 6, 1, 1, 8, 2, 4
Offset: 0

Views

Author

Zak Seidov, Mar 23 2005

Keywords

Examples

			0.39129683647657668736453346433686890965266775498198...
		

Crossrefs

Programs

  • Maple
    x:= LambertW(log(11))/log(11):
    s:= convert(evalf(x, 140), string):
    seq(parse(s[n+2]), n=0..123);  # Alois P. Heinz, Dec 03 2014
  • Mathematica
    RealDigits[ProductLog[Log[11]]/Log[11], 10, 105][[1]] (* Amiram Eldar, May 04 2023 *)

Formula

x*11^x = 1.
x = (1/11)^(1/11)^(1/11)^... = LambertW(log(11))/log(11). - Alois P. Heinz, Dec 03 2014

Extensions

More terms from Alois P. Heinz, Dec 03 2014

A196549 Decimal expansion of the number x satisfying x*2^x=e.

Original entry on oeis.org

1, 1, 9, 0, 7, 8, 3, 6, 8, 2, 9, 7, 3, 2, 9, 5, 9, 1, 5, 3, 1, 8, 0, 0, 2, 5, 0, 6, 8, 5, 8, 5, 7, 0, 1, 0, 1, 7, 3, 3, 5, 7, 2, 6, 5, 9, 1, 9, 2, 2, 8, 4, 2, 6, 7, 1, 3, 7, 1, 5, 2, 4, 4, 3, 0, 2, 6, 6, 5, 0, 3, 8, 9, 6, 7, 2, 9, 8, 7, 5, 9, 3, 4, 9, 2, 1, 0, 0, 9, 3, 7, 7, 2, 2, 0, 3, 3, 3, 7, 2, 9, 6
Offset: 1

Views

Author

Clark Kimberling, Oct 03 2011

Keywords

Examples

			x=1.19078368297329591531800250685857010...
		

Crossrefs

Cf. A196515.

Programs

  • Mathematica
    Plot[{2^x, 1/x, 2/x, 3/x, 4/x}, {x, 0, 2}]
    t = x /. FindRoot[2^x == 1/x, {x, 0.5, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A104748 *)
    t = x /. FindRoot[2^x == E/x, {x, 0.5, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196549 *)
    t = x /. FindRoot[2^x == 3/x, {x, 0.5, 2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196550 *)
    t = x /. FindRoot[2^x == 4/x, {x, 0.5, 2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196551 *)
    t = x /. FindRoot[2^x == 5/x, {x, 0.5, 2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196552 *)
    t = x /. FindRoot[2^x == 6/x, {x, 0.5, 2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196553 *)
    RealDigits[ ProductLog[ E*Log[2] ] / Log[2], 10, 100] // First (* Jean-François Alcover, Feb 27 2013 *)

A196550 Decimal expansion of the number x satisfying x*2^x=3.

Original entry on oeis.org

1, 2, 5, 6, 0, 5, 8, 6, 5, 9, 3, 9, 1, 7, 4, 5, 2, 3, 8, 0, 2, 4, 1, 6, 7, 4, 6, 2, 3, 4, 2, 1, 3, 3, 7, 1, 1, 1, 1, 3, 3, 3, 7, 0, 2, 0, 0, 8, 9, 6, 5, 5, 8, 6, 4, 3, 5, 6, 3, 0, 0, 6, 3, 5, 6, 5, 9, 0, 4, 7, 5, 1, 6, 1, 5, 9, 4, 3, 5, 6, 2, 7, 3, 1, 8, 1, 8, 3, 0, 3, 8, 3, 7, 6, 4, 6, 6, 6, 4, 2
Offset: 1

Views

Author

Clark Kimberling, Oct 03 2011

Keywords

Examples

			x=1.25605865939174523802416746234213371111333...
		

Programs

  • Mathematica
    Plot[{2^x, 1/x, 2/x, 3/x, 4/x}, {x, 0, 2}]
    t = x /. FindRoot[2^x == 1/x, {x, 0.5, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A104748 *)
    t = x /. FindRoot[2^x == E/x, {x, 0.5, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196549 *)
    t = x /. FindRoot[2^x == 3/x, {x, 0.5, 2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196550 *)
    t = x /. FindRoot[2^x == 4/x, {x, 0.5, 2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196551 *)
    t = x /. FindRoot[2^x == 5/x, {x, 0.5, 2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196552 *)
    t = x /. FindRoot[2^x == 6/x, {x, 0.5, 2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196553 *)
    RealDigits[ ProductLog[ Log[8] ] / Log[2], 10, 100] // First (* Jean-François Alcover, Feb 27 2013 *)

A196551 Decimal expansion of the number x satisfying x*2^x=4.

Original entry on oeis.org

1, 4, 5, 6, 9, 9, 9, 5, 5, 9, 1, 3, 4, 5, 9, 1, 8, 2, 6, 2, 5, 3, 2, 2, 3, 0, 2, 5, 6, 9, 4, 2, 5, 5, 4, 0, 8, 6, 4, 9, 8, 5, 9, 7, 2, 5, 5, 8, 1, 9, 9, 6, 4, 3, 4, 9, 8, 1, 1, 3, 5, 9, 6, 7, 4, 0, 4, 5, 5, 9, 4, 7, 0, 1, 8, 8, 1, 5, 9, 0, 6, 9, 7, 5, 2, 4, 0, 6, 0, 3, 9, 2, 7, 6, 8, 6, 8, 8, 0, 0
Offset: 1

Views

Author

Clark Kimberling, Oct 03 2011

Keywords

Examples

			x=1.4569995591345918262532230256942554086498597255...
		

Programs

  • Mathematica
    Plot[{2^x, 1/x, 2/x, 3/x, 4/x}, {x, 0, 2}]
    t = x /. FindRoot[2^x == 1/x, {x, 0.5, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A104748 *)
    t = x /. FindRoot[2^x == E/x, {x, 0.5, 1}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196549 *)
    t = x /. FindRoot[2^x == 3/x, {x, 0.5, 2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196550 *)
    t = x /. FindRoot[2^x == 4/x, {x, 0.5, 2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196551 *)
    t = x /. FindRoot[2^x == 5/x, {x, 0.5, 2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196552 *)
    t = x /. FindRoot[2^x == 6/x, {x, 0.5, 2}, WorkingPrecision -> 100]
    RealDigits[t]  (* A196553 *)
    RealDigits[ ProductLog[ Log[16] ] / Log[2], 10, 100] // First (* Jean-François Alcover, Feb 27 2013 *)
Previous Showing 11-20 of 22 results. Next