cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A138957 Concatenation of the reversed digits of numbers from 1 to n.

Original entry on oeis.org

1, 12, 123, 1234, 12345, 123456, 1234567, 12345678, 123456789, 12345678901, 1234567890111, 123456789011121, 12345678901112131, 1234567890111213141, 123456789011121314151, 12345678901112131415161
Offset: 1

Views

Author

Artur Jasinski, Apr 04 2008, Apr 05 2008

Keywords

Comments

There are no primes in this sequence for n<=7000

Crossrefs

Programs

  • Mathematica
    b = {}; a = {}; Do[w = RealDigits[n]; w = First[w]; Do[AppendTo[a, w[[Length[w] - k + 1]]], {k, 1, Length[w]}]; p = FromDigits[a]; AppendTo[b, p], {n, 1, 21}]; b
    (* or *)
    Table[FromDigits[Flatten[Reverse/@IntegerDigits[Range[n]]]],{n,20}] (* Harvey P. Dale, Oct 22 2013 *)

A138960 a(n) = smallest prime divisor of A138957(n).

Original entry on oeis.org

1, 2, 3, 2, 3, 2, 127, 2, 3, 857, 3, 3, 18503, 3, 3, 43, 3, 3, 17, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 7, 3, 3, 1051, 3, 3, 67103, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Artur Jasinski, Apr 04 2008

Keywords

Comments

For largest prime divisors see A138961.

Crossrefs

Programs

  • Mathematica
    a = {}; b = {}; Do[w = RealDigits[n]; w = First[w]; Do[AppendTo[a, w[[Length[w] - k + 1]]], {k, 1, Length[w]}]; p = FromDigits[a]; AppendTo[b, First[First[FactorInteger[p]]]], {n, 1, 38}]; b
    A137957[n_] := FromDigits[Flatten[Reverse /@ IntegerDigits[Range[n]]]];
    Table[FactorInteger[A137957[n]][[1, 1]], {n, 39}] (* Robert Price, May 10 2019 *)

Extensions

a(39)-a(69) from Robert Price, May 10 2019

A104757 Decimal expansion of solution to x^(9^x)=9.

Original entry on oeis.org

1, 1, 7, 9, 0, 6, 7, 9, 9, 4, 1, 3, 0, 5, 4, 6, 7, 1, 1, 3, 2, 6, 6, 2, 7, 2, 6, 8, 8, 7, 0, 6, 7, 2, 7, 1, 4, 2, 4, 7, 3, 6, 3, 8, 6, 3, 6, 9, 8, 8, 5, 7, 9, 0, 8, 9, 1, 3, 6, 0, 1, 4, 4, 8, 6, 5, 3, 9, 9, 2, 1, 7, 5, 4, 1, 0, 3, 8, 4, 8, 3, 2, 7, 2, 1, 2, 5, 0, 8, 3, 5, 7, 1, 5, 0, 2, 7, 1, 5, 8, 0, 0, 3, 9, 0
Offset: 1

Views

Author

Zak Seidov, Mar 23 2005

Keywords

Examples

			x=1.179067994130546711326627268870672714247363863698857908913601448...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ FindRoot[x^(9^x) == 9, {x, 1}, WorkingPrecision -> 2^7] [[1, 2]]][[1]] (* Robert G. Wilson v, Mar 26 2005 *)

Extensions

More terms from Robert G. Wilson v, Mar 26 2005

A138961 a(n) = largest prime divisor of A138957(n).

Original entry on oeis.org

1, 3, 41, 617, 823, 643, 9721, 14593, 3803, 14405693, 10939223, 4156374407, 2663693, 5603770631, 1221751714624799, 287108811653770498027, 74103167823547, 11843077531813991, 726216405947772436185983423, 769725127, 18274551225153265813469
Offset: 1

Views

Author

Artur Jasinski, Apr 04 2008

Keywords

Comments

For smallest prime divisors see A138960.

Crossrefs

Programs

  • Mathematica
    a = {}; b = {}; Do[w = RealDigits[n]; w = First[w]; Do[AppendTo[a, w[[Length[w] - k + 1]]], {k, 1, Length[w]}]; p = FromDigits[a]; AppendTo[b, First[Last[FactorInteger[p]]]], {n, 1, 18}]; b
    A137957[n_] := FromDigits[Flatten[Reverse /@ IntegerDigits[Range[n]]]];
    Table[First[Last[FactorInteger[A137957[n]]]], {n, 39}] (* Robert Price, May 10 2019 *)

A138962 a(1) = 1, a(n) = the smallest prime divisor of A138793(n).

Original entry on oeis.org

1, 3, 3, 29, 3, 3, 19, 3, 3, 457, 3, 3, 16087, 3, 3, 35963, 3, 3, 167, 3, 3, 7, 3, 3, 13, 3, 3, 953, 3, 3, 7, 3, 3, 548636579, 3, 3, 19, 3, 3, 71, 3, 3, 13, 3, 3, 89, 3, 3, 114689, 3, 3, 17, 3, 3, 12037, 3, 3, 7, 3, 3
Offset: 1

Views

Author

Artur Jasinski, Apr 04 2008

Keywords

Comments

a(61) > 10^11. - Robert Price, Mar 22 2015

Crossrefs

Programs

  • Mathematica
    b = {}; a = {}; Do[w = RealDigits[n]; w = First[w]; Do[AppendTo[a, w[[k]]], {k, 1, Length[w]}]; p = FromDigits[Reverse[a]]; AppendTo[b, First[First[FactorInteger[p]]]], {n, 1, 31}]; b (* Artur Jasinski, Apr 04 2008 *)
    lst = {}; Table[First[First[FactorInteger[FromDigits[Reverse[lst = Join[lst,IntegerDigits[n]]]]]]], {n, 1, 60}] (* Robert Price, Mar 22 2015 *)
  • PARI
    f(n) = my(D = Vec(concat(apply(s->Str(s), [1..n])))); eval(concat(vector(#D, k, D[#D-k+1]))); \\ A138793
    a(n) = my(k=f(n)); forprime(p=2, 10^6, if(k%p == 0, return(p))); if(n == 1, 1, vecmin(factor(k)[,1])); \\ Daniel Suteu, May 27 2022

Formula

a(n) = A020639(A138793(n)). - Daniel Suteu, May 27 2022

Extensions

a(32)-a(60) from Robert Price, Mar 22 2015

A138794 a(n) = A138793(n+1)-A138793(n).

Original entry on oeis.org

20, 300, 4000, 50000, 600000, 7000000, 80000000, 900000000, 1000000000, 1100000000000, 210000000000000, 31000000000000000, 4100000000000000000, 510000000000000000000, 61000000000000000000000
Offset: 1

Views

Author

Artur Jasinski, Mar 30 2008

Keywords

Comments

First differences of A138793

Crossrefs

Programs

  • Mathematica
    b = {}; a = {}; Do[w = RealDigits[n]; w = First[w]; Do[AppendTo[a, w[[k]]], {k, 1, Length[w]}]; p = FromDigits[Reverse[a]]; AppendTo[b, p], {n, 1, 31}]; c = {}; Do[AppendTo[c, b[[n + 1]] - b[[n]]], {n, 1, Length[b] - 1}]; c (*Artur Jasinski*)

Formula

a(n) = A138793(n+1)-A138793(n)

A138963 a(1) = 1, a(n) = the largest prime divisor of A138793(n).

Original entry on oeis.org

1, 7, 107, 149, 953, 218107, 402859, 4877, 379721, 4349353, 169373, 182473, 1940144339383, 2184641, 437064932281, 5136696159619, 67580875919190833, 1156764458711, 464994193118899, 4617931439293, 1277512103328491957510030561, 8177269604099
Offset: 1

Views

Author

Artur Jasinski, Apr 04 2008

Keywords

Comments

For the smallest prime divisors of A138793 see A138962.

Crossrefs

Programs

  • Mathematica
    b = {}; a = {}; Do[w = RealDigits[n]; w = First[w]; Do[AppendTo[a, w[[k]]], {k, 1, Length[w]}]; p = FromDigits[Reverse[a]]; AppendTo[b, First[Last[FactorInteger[p]]]], {n, 1, 31}]; b (* Artur Jasinski, Apr 04 2008 *)
    lst = {}; Table[First[Last[FactorInteger[FromDigits[Reverse[lst = Join[lst,IntegerDigits[n]]]]]]], {n, 1, 10}] (* Robert Price, Mar 22 2015 *)
  • PARI
    f(n) = my(D = Vec(concat(apply(s->Str(s), [1..n])))); eval(concat(vector(#D, k, D[#D-k+1]))); \\ A138793
    a(n) = if(n == 1, 1, vecmax(factor(f(n))[,1])); \\ Daniel Suteu, May 26 2022

Formula

a(n) = A006530(A138793(n)). - Daniel Suteu, May 26 2022

A371720 a(n) = m^^m mod 10^len(m), where m = A038399(n) and ^^ indicates tetration or hyper-4.

Original entry on oeis.org

1, 11, 811, 3811, 63811, 763811, 3763811, 5103763811, 515103763811, 19515103763811, 6819515103763811, 8146819515103763811, 3808146819515103763811, 7213808146819515103763811, 9807213808146819515103763811, 4939807213808146819515103763811
Offset: 1

Views

Author

Marco Ripà, Apr 04 2024

Keywords

Comments

For any n, a(n) == a(n + 1) (mod 10^len(A038399(n))), where len(k) := number of digits in k. Assuming len(a(n)) > 1, this is a general property of every concatenated sequence with fixed rightmost digits (such as A014925, A061839, A092845, and A104759), as shown in Ripà's book "La strana coda della serie n^n^...^n".
Moreover, assuming n > 1, since A038399(n) is congruent to 11 (mod 20), the convergence speed of A038399(n)^^b (say, V(A038399(n), b) = {2, 1, 1, 1, ...}) is 2 at height 1 and becomes a unit value for any integer b > 1 (see Links). Hence, a(n) is given by A038399(n)^^len(A038399(n) - 1) (mod 10^len(A038399(n))), and also by A038399(n)^^len(A038399(n)) (mod 10^len(A038399(n))) since A038399(n)^^len(A038399(n)) == A038399(n)^^len(A038399(n) - 1) (mod 10^len(A038399(n))) holds for any n.

Examples

			a(8) is given by the rightmost 10 digits of 2113853211^^2113853211 and thus a(8) = 5103763811.
a(9) == a(8) (mod 10^10), i.e., the digits of a(9) end with the digits of a(8) (and then a(9) has 2 more preceding).
		

References

  • Marco Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011, page 60. ISBN 978-88-6178-789-6

Crossrefs

Cf. A000045 (Fibonacci), A038399, A171882 (tetration), A317824, A317903, A317905.

Formula

a(n) = A038399(n)^^(len(A038399(n)) - 1) mod 10^len(A038399(n)), where len(A038399(n)) = ceiling(log_10(A038399(n) + 1)).

A078998 Choose a(n) so that a(1)+a(2)+...+a(n) = concatenation of n first natural numbers.

Original entry on oeis.org

1, 11, 111, 1111, 11111, 111111, 1111111, 11111111, 111111111, 12222222121, 1222222212101, 122222221210101, 12222222121010101, 1222222212101010101, 122222221210101010101, 12222222121010101010101
Offset: 1

Views

Author

Benoit Cloitre, Jan 12 2003

Keywords

Crossrefs

Programs

  • Mathematica
    b = {}; a = {}; Do[w = RealDigits[n]; w = First[w]; Do[AppendTo[a, w[[k]]], {k, 1, Length[w]}]; p = FromDigits[a]; AppendTo[b, p], {n, 1, 30}]; c = {}; Do[AppendTo[c, b[[n + 1]] - b[[n]]], {n, 1, Length[b] - 1}]; c (* Artur Jasinski, Mar 30 2008 *)

Formula

a(1)=1; for n>1, a(n) = A007908(n)-A007908(n-1)

A138795 a(n) = (A138793(n+1)-A138793(n))/10^n.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 1, 110, 2100, 31000, 410000, 5100000, 61000000, 710000000, 8100000000, 91000000000, 20000000000, 1200000000000, 22000000000000, 320000000000000, 4200000000000000, 52000000000000000, 620000000000000000
Offset: 1

Views

Author

Artur Jasinski, Mar 30 2008

Keywords

Comments

First differences of A138793 divided by 10^n

Crossrefs

Programs

  • Mathematica
    b = {}; a = {}; Do[w = RealDigits[n]; w = First[w]; Do[AppendTo[a, w[[k]]], {k, 1, Length[w]}]; p = FromDigits[Reverse[a]]; AppendTo[b, p], {n, 1, 61}]; c = {}; Do[AppendTo[c, (b[[n + 1]] - b[[n]])/(10^n)], {n, 1, Length[b] - 1}]; c (*Artur Jasinski*)

Formula

a(n) = A138793(n+1)-A138793(n)
Previous Showing 11-20 of 20 results.