cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A186689 Numbers n such that n^4 + 1 is a semiprime.

Original entry on oeis.org

3, 5, 7, 8, 10, 11, 12, 13, 14, 17, 18, 21, 22, 23, 26, 29, 30, 32, 35, 36, 38, 39, 40, 42, 50, 52, 57, 58, 61, 62, 65, 68, 71, 72, 73, 78, 81, 84, 86, 92, 94, 98, 100, 102, 103, 105, 108, 112, 113, 114, 115, 116, 119, 120, 122, 124, 128, 129, 130, 138, 146, 148, 152, 153, 158
Offset: 1

Views

Author

Michel Lagneau, Feb 25 2011

Keywords

Comments

Corresponding semiprimes n^4+1 are in A186688.

Examples

			3 is in the sequence because 3^4 + 1 = 82 = 2*41 is semiprime.
		

Crossrefs

Programs

  • Mathematica
    SemiPrimeQ[ n_] := (n > 1) && (2 == Plus @@ (Transpose[FactorInteger[n]][[2]]));
      Select[Range[300], SemiPrimeQ[#^4 + 1] &]
    Select[Range[200],PrimeOmega[#^4+1]==2&] (* Harvey P. Dale, Jan 27 2013 *)

A261460 Numbers k such that k^11-1 is a semiprime.

Original entry on oeis.org

2, 20, 30, 60, 212, 224, 258, 272, 390, 398, 480, 504, 654, 770, 812, 1040, 1194, 1448, 1698, 1748, 1874, 2000, 2238, 2274, 2294, 2438, 2522, 2664, 2714, 2790, 2802, 3020, 3138, 3168, 3300, 3392, 3434, 3794, 4160, 4232, 4518, 4722, 4968, 5334, 5654, 5658
Offset: 1

Views

Author

Vincenzo Librandi, Aug 21 2015

Keywords

Comments

After 2, numbers k such that k-1 and k^10 + k^9 + k^8 + k^7 + k^6 + k^5 + k^4 + k^3 + k^2 + k + 1 are both prime.
Intersection of A008864 and A162862. - Michel Marcus, Aug 21 2015

Examples

			20 is in sequence because 20^11-1 = 204799999999999 = 19*10778947368421, where 19 and 10778947368421 are both prime.
		

Crossrefs

Cf. similar sequences listed in A261435.
Cf. A105122.

Programs

  • Magma
    IsSemiprime:=func; [n: n in [2..4000] | IsSemiprime(s) where s is n^11- 1];
    
  • Mathematica
    Select[Range[6000], PrimeOmega[#^11 - 1] == 2 &]
  • PARI
    isok(n)=bigomega(n^11-1)==2 \\ Anders Hellström, Aug 21 2015

A105934 Positive integers n such that n^22 + 1 is semiprime (A001358).

Original entry on oeis.org

116, 176, 184, 300, 444, 470, 584, 690, 696, 950
Offset: 1

Author

Jonathan Vos Post, Apr 26 2005

Keywords

Comments

We have the polynomial factorization: n^22 + 1 = (n^2 + 1) * (n^20 - n^18 + n^16 - n^14 + n^12 - n^10 + n^8 - n^6 + n^4 - n^2 + 1). Hence after the initial n=1 prime, the binomial can never be prime. It can be semiprime iff n^2+1 is prime and (n^20 - n^18 + n^16 - n^14 + n^12 - n^10 + n^8 - n^6 + n^4 - n^2 + 1) is prime.

Examples

			116^22 + 1 = 2618639792014920380336685706161496723088736257 = 13457 * 194593133091693570657404005808240820620401,
300^22 + 1 = 3138105960900000000000000000000000000000000000000000001 = 90001 * 34867456593815624270841435095165609271008099910001,
950^22 + 1 = 323533544973709366507562922501564025878906250000000000000000000001 = 902501 * 358485525194663902319845543109164450653136395416736380347501.
		

Programs

  • Magma
    IsSemiprime:=func< n | &+[ k[2]: k in Factorization(n) ] eq 2 >; [n: n in [2..1000] | IsSemiprime(n^22+1)]; // Vincenzo Librandi, Dec 21 2010
  • Mathematica
    Select[Range[1000], PrimeOmega[#^22 + 1]==2&] (* Vincenzo Librandi, May 24 2014 *)

Formula

a(n)^22 + 1 is in A001358. a(n)^2+1 is in A000040 and (a(n)^20 - a(n)^18 + a(n)^16 - a(n)^14 + a(n)^12 - a(n)^10 + a(n)^8 - a(n)^6 + a(n)^4 - a(n)^2 + 1) is in A000040.
Previous Showing 11-13 of 13 results.