cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A248208 Primes p such that p^3 is the concatenation of two k-digit primes where k is half the number of decimal digits in p^3.

Original entry on oeis.org

3, 11, 47, 83, 1063, 1637, 1699, 7529, 7673, 23059, 28097, 29573, 34157, 34961, 36587, 40897, 43609, 44711, 101839, 102763, 103423, 104087, 104393, 106363, 117437, 117499, 124471, 125407, 126011, 129419, 134753, 135007, 137393, 139487, 143879, 143971, 145037
Offset: 1

Views

Author

Derek Orr, Oct 03 2014

Keywords

Examples

			47 is prime and 47^3 = 103823 is the concatenation of two primes (103 and 823) that are of the same length (here, their length is 3). So, 47 is a member of this sequence.
73 is not in the sequence since 73^3 = 389017, where 389 is a 3-digit prime but 017 is a 2-digit prime. - _Jens Kruse Andersen_, Oct 06 2014
		

Crossrefs

Programs

  • PARI
    forprime(p=1,10^6,d=digits(p^3);if((#d)%2==0,if(isprime((p^3)\(10^(#d/2)))&&isprime((p^3)%(10^(#d/2)))&&#Str((p^3)%(10^(#d/2)))==#d/2,print1(p,", "))))

Extensions

Terms and PARI program corrected by Jens Kruse Andersen, Oct 06 2014

A173935 a(n) is the least prime that is the concatenation of two primes in exactly n different ways.

Original entry on oeis.org

2, 23, 313, 3137, 233347, 739397, 379837313, 73932013313, 7399973479337
Offset: 0

Views

Author

Robert G. Wilson v, Mar 02 2010

Keywords

Examples

			23 = 2 & 3, 313 = 3 & 13 and 31 & 3, etc.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{c = 0, id = IntegerDigits@n, k = 0}, len = Length@ id; While[ k < len, If[ Union@ PrimeQ[ FromDigits@# & /@ {id[[;; k + 1]], id[[k + 2 ;;]]}] == {True}, c++ ]; k++ ]; c]; t = Table[0, {10}]; p = 2; While[p < 10^8, a = f@p; If[ t[[a]] == 0, t[[a]] = p; Print[{a, p}]]; p = NextPrime@ p]

Extensions

a(6) from Robert G. Wilson v, Mar 04 2010
a(7) from Donovan Johnson, Nov 09 2010
a(8) from Giovanni Resta, Mar 04 2014

A238647 Primes which are not the concatenation of two primes.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 29, 31, 41, 43, 47, 59, 61, 67, 71, 79, 83, 89, 97, 101, 103, 107, 109, 127, 131, 139, 149, 151, 157, 163, 167, 179, 181, 191, 199, 227, 239, 251, 257, 263, 269, 277, 281, 307, 349, 401, 409, 419, 421, 431, 439, 443, 449, 457, 461
Offset: 1

Views

Author

Colin Barker, Mar 02 2014

Keywords

Comments

223 is the first term in A141409 which is not in this sequence.
In this sequence, a prime preceded by one or more zeros is not considered to be a prime.

Examples

			59 is in the sequence because 5 is prime but 9 is not prime.
223 is not in the sequence because both 2 and 23 are primes.
		

Crossrefs

Cf. A141409, A105184 (complement), A238056, A238057, A238499.

A255976 Primes that are the concatenation of two 3-digit primes.

Original entry on oeis.org

101107, 101113, 101149, 101173, 101197, 101281, 101293, 101347, 101359, 101383, 101419, 101449, 101467, 101503, 101599, 101641, 101653, 101701, 101719, 101797, 101839, 101863, 101929, 101977, 103307, 103349, 103409, 103421, 103457, 103577, 103613
Offset: 1

Views

Author

Zak Seidov, Mar 12 2015

Keywords

Comments

The last term is a(2753)=997991.

Crossrefs

A168529 is a subsequence.
Subsequence of A105184.

Programs

  • Mathematica
    Select[1000 First@ # + Last@ # & /@ Permutations[Select[Range[100, 999], PrimeQ], {2}], PrimeQ] (* Michael De Vlieger, Mar 13 2015 *)

A276803 Semiprimes k such that the concatenation of its prime factors is prime.

Original entry on oeis.org

6, 21, 22, 33, 39, 46, 51, 58, 82, 93, 111, 115, 133, 141, 142, 159, 166, 177, 187, 201, 205, 219, 226, 235, 237, 247, 249, 253, 262, 267, 274, 291, 301, 319, 327, 355, 358, 391, 411, 427, 478, 489, 501, 502, 505, 511, 535, 538, 543, 562, 565, 573, 583, 586, 589
Offset: 1

Views

Author

K. D. Bajpai, Sep 17 2016

Keywords

Comments

Alternatively: Semiprimes p*q, with p
Corresponding primes are at A105184.

Examples

			21 is a term because 21 = 3 * 7 that is a semiprime : concatenation of 3 and 7 = 37  which is prime.
142 is a term because 142 = 2 * 71 that is a semiprime : concatenation of 2 and 71 = 271 which is prime.
		

Crossrefs

Programs

  • Mathematica
    Select[Select[Range[1000], PrimeOmega[#] == 2 &], PrimeQ[FromDigits[Join[IntegerDigits [First@First[FactorInteger[#]]], IntegerDigits[First@Last[FactorInteger[#]]]]]] &]
    Select[Range[1000],PrimeOmega[#]==PrimeNu[#]==2&&PrimeQ[FromDigits[ Flatten[ IntegerDigits/@FactorInteger[#][[All,1]]]]]&] (* Harvey P. Dale, Aug 03 2022 *)
  • PARI
    list(lim)=my(v=List()); forprime(p=2,lim\2, forprime(q=2, min(p,lim\p), if(isprime(eval(Str(q,p))), listput(v,p*q)))); Set(v) \\ Charles R Greathouse IV, Sep 17 2016

A361530 Primes that can be written as the result of shuffling the decimal digits of two primes.

Original entry on oeis.org

23, 37, 53, 73, 113, 127, 131, 137, 139, 151, 157, 173, 179, 193, 197, 211, 223, 229, 233, 239, 241, 271, 283, 293, 311, 313, 317, 331, 337, 347, 353, 359, 367, 373, 379, 383, 389, 397, 421, 431, 433, 457, 523, 541, 547, 571, 593, 613, 617, 631, 673, 677, 719
Offset: 1

Author

Robert C. Lyons, Mar 14 2023

Keywords

Comments

Each term is essentially an element of the shuffle product of the decimal digits of two primes (possibly equal).

Examples

			37 and 73 are in the sequence because they are both the result of shuffling 3 and 7.
127 is in the sequence because it is the result of shuffling 2 and the digits of 17.
1193 is in the sequence because it is the result of shuffling the digits of 13 and the digits of 19.
163 is not in the sequence because it is not the result of shuffling the digits of two primes. 163 is the result of permuting the digits of 3 and 61; however, 163 contains the digits of 61 in the wrong order.
		

Crossrefs

Programs

  • Python
    import sympy
    def get_shuffle_product(list_1, list_2):
        shuffle_product = set()
        shuffle = []
        _get_shuffle_product(list_1, list_2, shuffle, shuffle_product)
        return shuffle_product
    def _get_shuffle_product(list_1, list_2, shuffle, shuffle_product):
        if len(list_1) == 0 and len(list_2) == 0:
            shuffle_product.add(tuple(shuffle))
            return
        else:
            if len(list_1) == 0:
                shuffle.append(list_2[0])
                _get_shuffle_product(list_1, list_2[1:], shuffle, shuffle_product)
                shuffle.pop()
            elif len(list_2) == 0:
                shuffle.append(list_1[0])
                _get_shuffle_product(list_1[1:], list_2, shuffle, shuffle_product)
                shuffle.pop()
            else:
                shuffle.append(list_1[0])
                _get_shuffle_product(list_1[1:], list_2, shuffle, shuffle_product)
                shuffle.pop()
                shuffle.append(list_2[0])
                _get_shuffle_product(list_1, list_2[1:], shuffle, shuffle_product)
                shuffle.pop()
    max_prime_index = 25 # one and two digit primes.
    max_element = 999
    prime_set = set()
    for p_index in range(1, max_prime_index+1):
        p = sympy.prime(p_index)
        for q_index in range(p_index, max_prime_index+1):
            q = sympy.prime(q_index)
            list_p = list(str(p))
            list_q = list(str(q))
            shuffle_product = get_shuffle_product(list_p, list_q)
            for s in shuffle_product:
                candidate = int(''.join(s))
                if sympy.isprime(candidate) and candidate <= max_element:
                    prime_set.add(candidate)
    print(sorted(prime_set))
    
  • Python
    from sympy import isprime
    from itertools import chain, combinations
    def powerset(s): # skipping empty set and entire set
        return chain.from_iterable(combinations(s, r) for r in range(1, len(s)))
    def ok(n):
        if not isprime(n): return False
        s = str(n)
        for indices in powerset(range(len(s))):
            t1 = "".join(s[i] for i in indices)
            t2 = "".join(s[i] for i in range(len(s)) if i not in indices)
            if t1[0] != "0" and t2[0] != "0" and isprime(int(t1)) and isprime(int(t2)):
                return True
    print([k for k in range(720) if ok(k)]) # Michael S. Branicky, Apr 16 2023

A165631 Numbers whose cube is a concatenation of primes, i.e., in A152242.

Original entry on oeis.org

3, 7, 9, 11, 13, 15, 17, 18, 27, 28, 29, 31, 33, 38, 39, 45, 47, 48, 49, 53, 55, 58, 59, 61, 63, 68, 71, 73, 75, 83, 85, 88, 91, 95, 98, 103, 108, 111, 113, 117, 121, 125, 127, 131, 133, 135, 137, 138, 148, 153, 157, 159, 161, 163, 167, 168, 173, 175, 177, 178, 179
Offset: 1

Author

Zak Seidov and M. F. Hasler, Oct 16 2009

Keywords

Crossrefs

Programs

  • PARI
    for(n=1,999, is_A152242(n^3) & print1(n", "))

Extensions

Edited by Charles R Greathouse IV, Apr 24 2010
Previous Showing 21-27 of 27 results.