Original entry on oeis.org
7, 19, 34, 41, 53, 44, 38, 103, 91, 73, 99, 75, 135, 142, 147, 118, 133, 125, 118, 193, 229, 191, 212, 202, 197, 201, 216, 213, 248, 239, 209, 248, 279, 279, 277, 277, 333, 325, 350, 327, 299, 308, 264, 309, 314, 322, 297, 281, 363, 374, 461, 488, 484, 482
Offset: 1
a(1) = prime(3almostprime(1)) - 3almostprime(prime(1)) = prime(8) - 3almostprime(2) = 19 - 12 = 7.
a(2) = prime(3almostprime(2)) - 3almostprime(prime(2)) = prime(12) - 3almostprime(3) = 37 - 18 = 19.
a(3) = prime(3almostprime(3)) - 3almostprime(prime(3)) = prime(18) - 3almostprime(5) = 61 - 27 = 34.
Cf.
A124268 (prime(3-almost prime(n))),
A124269 (3-almost prime(prime(n))).
Cf.
A106349 (prime(semiprime(n))),
A106350 (semiprime(prime(n))),
A122824 (prime(semiprime(n)) - semiprime(prime(n))).
-
lista(nn) = {p = primes(nn); pp = select(x->bigomega(x)==3, vector(nn, n, n)); for (n=1, nn, print1(p[pp[n]] - pp[p[n]], ", "););} \\ Michel Marcus, Oct 15 2014
A124282
Primes indexed by 4-almost primes.
Original entry on oeis.org
53, 89, 151, 173, 251, 263, 281, 419, 433, 457, 463, 541, 569, 701, 743, 761, 769, 809, 863, 881, 911, 1097, 1129, 1193, 1213, 1249, 1291, 1373, 1427, 1439, 1459, 1481, 1571, 1583, 1657, 1783, 1931, 1949, 1951, 2017, 2029, 2087, 2203, 2213, 2287, 2297
Offset: 1
a(1) = prime(4almostprime(1)) = prime(16) = 53.
a(2) = prime(4almostprime(2)) = prime(24) = 89.
a(3) = prime(4almostprime(3)) = prime(36) = 151.
A124283
4-almost primes indexed by primes.
Original entry on oeis.org
24, 36, 54, 60, 90, 104, 136, 150, 189, 225, 232, 294, 308, 328, 344, 375, 441, 459, 488, 510, 516, 550, 570, 621, 676, 708, 714, 738, 748, 776, 852, 860, 884, 910, 999, 1014, 1060, 1096, 1112, 1161, 1197, 1206, 1256, 1274, 1284, 1290, 1356, 1432, 1450, 1482
Offset: 1
a(1) = 4almostprime(prime(1)) = 4almostprime(2) = 24.
a(2) = 4almostprime(prime(2)) = 4almostprime(3) = 36.
a(3) = 4almostprime(prime(3)) = 4almostprime(5) = 54.
-
from math import isqrt
from sympy import prime, primepi, integer_nthroot, primerange
def A124283(n):
def f(x): return int(prime(n)+x-sum(primepi(x//(k*m*r))-c for a, k in enumerate(primerange(integer_nthroot(x, 4)[0]+1)) for b, m in enumerate(primerange(k, integer_nthroot(x//k, 3)[0]+1), a) for c, r in enumerate(primerange(m, isqrt(x//(k*m))+1), b)))
def bisection(f,kmin=0,kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
return bisection(f,n,n) # Chai Wah Wu, Sep 09 2024
A124284
Prime(4almostprime(n))-4almostprime(prime(n)). Commutator [A000040,A014613] at n.
Original entry on oeis.org
29, 53, 97, 113, 161, 159, 145, 269, 244, 232, 231, 247, 261, 373, 399, 386, 328, 350, 375, 371, 395, 547, 559, 572, 537, 541, 577, 635, 679, 663, 607, 621, 687, 673, 658, 769, 871, 853, 839, 856, 832, 881, 947, 939, 1003, 1007, 955, 915, 907, 889, 941, 989
Offset: 1
a(1) = prime(4almostprime(1)) - 4almostprime(prime(1)) = 53 - 24 = 29.
a(2) = prime(4almostprime(2)) - 4almostprime(prime(2)) = 89 - 36 = 53.
a(3) = prime(4almostprime(3)) - 4almostprime(prime(3)) = 151 - 54 = 97.
It is mere coincidence that the first 4 values are all primes.
Cf. Primes indexed by 4-almost primes =
A124282. 4-almost primes indexed by primes =
A124283. Primes indexed by 3-almost primes =
A124268. 3-almost primes indexed by primes =
A124269. prime(3almostprime(n)) - 3almostprime(prime(n)) =
A124270. See also
A106349 Primes indexed by semiprimes. See also
A106350 Semiprimes indexed by primes. See also
A122824 Prime(semiprime(n)) - semiprime(prime(n)).
-
FourAlmostPrimePi[n_] := Sum[PrimePi[n/(Prime@i*Prime@j*Prime@k)] - k + 1, {i, PrimePi[n^(1/4)]}, {j, i, PrimePi[(n/Prime@i)^(1/3)]}, {k, j, PrimePi@ Sqrt[n/(Prime@i*Prime@j)]}];
FourAlmostPrime[n_] := Block[{e = Floor[Log[2, n] + 1], a, b}, a = 2^e; Do[b = 2^p; While[ FourAlmostPrimePi@a < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2];
Table[ Prime@ FourAlmostPrime@ n - FourAlmostPrime@ Prime@ n, {n, 52}]
-
from math import isqrt
from sympy import primepi, primerange, integer_nthroot, prime
def A124284(n):
def f(x): return int(x-sum(primepi(x//(k*m*r))-c for a,k in enumerate(primerange(integer_nthroot(x,4)[0]+1)) for b,m in enumerate(primerange(k,integer_nthroot(x//k,3)[0]+1),a) for c,r in enumerate(primerange(m,isqrt(x//(k*m))+1),b)))
m, k = n, f(n)+n
while m != k:
m, k = k, f(k)+n
r, k = (p:=prime(n)), f(p)+p
while r != k:
r, k = k, f(k)+p
return prime(m)-r # Chai Wah Wu, Aug 17 2024
A340018
MM-numbers of labeled graphs with half-loops covering an initial interval of positive integers, without isolated vertices.
Original entry on oeis.org
1, 3, 13, 15, 39, 65, 141, 143, 145, 165, 195, 377, 429, 435, 611, 705, 715, 1131, 1363, 1551, 1595, 1833, 1885, 1937, 2021, 2117, 2145, 2235, 2365, 2397, 2409, 2431, 2465, 2805, 3055, 4089, 4147, 4785, 5655, 5811, 6063, 6149, 6235, 6351, 6409, 6721, 6815
Offset: 1
The sequence of terms together with their corresponding multisets of multisets (edge sets) begins:
1: {}
3: {{1}}
13: {{1,2}}
15: {{1},{2}}
39: {{1},{1,2}}
65: {{2},{1,2}}
141: {{1},{2,3}}
143: {{3},{1,2}}
145: {{2},{1,3}}
165: {{1},{2},{3}}
195: {{1},{2},{1,2}}
377: {{1,2},{1,3}}
429: {{1},{3},{1,2}}
435: {{1},{2},{1,3}}
611: {{1,2},{2,3}}
705: {{1},{2},{2,3}}
715: {{2},{3},{1,2}}
1131: {{1},{1,2},{1,3}}
The version with full loops is
A320461.
The version not necessarily covering an initial interval is
A340019.
MM-numbers of graphs with loops are
A340020.
A006450 lists primes of prime index.
A106349 lists primes of semiprime index.
A257994 counts prime prime indices.
A302242 is the weight of the multiset of multisets with MM-number n.
A302494 lists MM-numbers of sets of sets, with connected case
A328514.
A309356 lists MM-numbers of simple graphs.
A322551 lists primes of squarefree semiprime index.
A339112 lists MM-numbers of multigraphs with loops.
A339113 lists MM-numbers of multigraphs.
Cf.
A000040,
A000720,
A001222,
A005117,
A056239,
A076610,
A112798,
A289509,
A302590,
A305079,
A326754,
A326788.
-
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
normQ[sys_]:=Or[Length[sys]==0,Union@@sys==Range[Max@@Max@@sys]];
Select[Range[1000],And[SquareFreeQ[#],normQ[primeMS/@primeMS[#]],And@@(PrimeQ[#]||(SquareFreeQ[#]&&PrimeOmega[#]==2)&/@primeMS[#])]&]
A124309
5-almost primes indexed by primes.
Original entry on oeis.org
48, 72, 108, 120, 180, 208, 270, 280, 368, 420, 450, 520, 592, 612, 660, 700, 760, 828, 920, 952, 976, 1032, 1064, 1128, 1242, 1288, 1323, 1372, 1380, 1428, 1575, 1624, 1674, 1700, 1752, 1768, 1880, 1976, 2028, 2096, 2178, 2196, 2312, 2328, 2384, 2394, 2475
Offset: 1
a(1) = 5almostprime(prime(1)) = 5almostprime(2) = 48 = 2^4 * 3.
a(2) = 5almostprime(prime(2)) = 5almostprime(3) = 72 = 2^3 * 3^2.
a(3) = 5almostprime(prime(3)) = 5almostprime(5) = 108 = 2^2 * 3^3.
Cf.
A124308 Primes indexed by 5-almost primes.
A124310 prime(5almostprime(n)) - 5almostprime(prime(n)). 4-almost primes indexed by primes =
A124283. prime(4almostprime(n)) - 4almostprime(prime(n)) =
A124284. Primes indexed by 3-almost primes =
A124268. 3-almost primes indexed by primes =
A124269. prime(3almostprime(n)) - 3almostprime(prime(n)) =
A124270. See also
A106349 Primes indexed by semiprimes. See also
A106350 Semiprimes indexed by primes. See also
A122824 Prime(semiprime(n)) - semiprime(prime(n)). Commutator [
A000040,
A001358] at n.
-
list(lim)=my(v=List(),u=v); forprime(p=2,lim\16, forprime(q=2,min(lim\(8*p),p), forprime(r=2,min(lim\(4*p*q),q), forprime(s=2,min(lim\(2*p*q*r),r), forprime(t=2,min(lim\(p*q*r*s),s), listput(v,p*q*r*s*t)))))); v=Set(v); forprime(p=2,#v, listput(u,v[p])); v=0; Vec(u) \\ Charles R Greathouse IV, Feb 10 2017
A230460
Prime(2*prime(n)).
Original entry on oeis.org
7, 13, 29, 43, 79, 101, 139, 163, 199, 271, 293, 373, 421, 443, 491, 577, 647, 673, 757, 821, 839, 929, 983, 1061, 1181, 1231, 1277, 1307, 1361, 1429, 1609, 1667, 1759, 1789, 1973, 1997, 2083, 2161, 2243, 2339, 2411, 2441, 2633, 2663, 2707, 2729, 2917
Offset: 1
a(3) = 29 because the third prime is 5, and 2 * 5 = 10, and then we see that the tenth prime is 29.
a(4) = 43 because the fourth prime is 7, and 2 * 7 = 14, and then we see that the fourteenth prime is 43.
A124308
Primes indexed by 5-almost primes.
Original entry on oeis.org
131, 223, 359, 409, 593, 613, 659, 953, 997, 1049, 1069, 1223, 1283, 1543, 1601, 1693, 1733, 1747, 1811, 1987, 2003, 2069, 2503, 2593, 2693, 2713, 2789, 2801, 2903, 3079, 3181, 3221, 3301, 3323, 3541, 3571, 3727, 4003, 4127, 4283
Offset: 1
a(1) = prime(5almostprime(1)) = prime(32 = 2^5) = 131.
a(2) = prime(5almostprime(2)) = prime(48 = 2^4 * 3) = 223.
a(3) = prime(5almostprime(3)) = prime(72 = 2^3 * 3^2) = 359.
a(4) = prime(5almostprime(4)) = prime(80 = 2^4 * 5) = 409.
Cf.
A124309 5-almost primes indexed by primes.
A124310 prime(5almostprime(n)) - 5almostprime(prime(n)). 4-almost primes indexed by primes =
A124283. prime(4almostprime(n)) - 4almostprime(prime(n)) =
A124284. Primes indexed by 3-almost primes =
A124268. 3-almost primes indexed by primes =
A124269. prime(3almostprime(n)) - 3almostprime(prime(n)) =
A124270. See also
A106349 Primes indexed by semiprimes. See also
A106350 Semiprimes indexed by primes. See also
A122824 Prime(semiprime(n)) - semiprime(prime(n)). Commutator [
A000040,
A001358] at n.
A124317
Semiprimes indexed by 3-almost primes.
Original entry on oeis.org
22, 34, 51, 57, 82, 85, 87, 123, 133, 134, 146, 158, 201, 205, 209, 214, 221, 226, 237, 295, 305, 309, 321, 327, 341, 361, 365, 371, 394, 395, 413, 447, 478, 481, 497, 501, 529, 533, 543, 545, 551, 554, 559, 583, 597, 614, 623, 635, 689, 699, 734, 763, 766
Offset: 1
a(1) = semiprime(3almostprime(1)) = semiprime(8 = 2^3) = 22 = 2 * 11.
a(2) = semiprime(3almostprime(2)) = semiprime(12 = 2^2 * 3) = 34 = 2 * 17.
a(3) = semiprime(3almostprime(3)) = semiprime(18 = 2 * 3^2) = 51 = 3 * 17.
Cf.
A124318 3-almost primes indexed by semiprimes.
A124319 semiprime(3almostprime(n)) - 3almostprime(semiprime(n)).
A124308 Primes indexed by 5-almost primes.
A124309 5-almost primes indexed by primes.
A124310 prime(5almostprime(n)) - 5almostprime(prime(n)). 4-almost primes indexed by primes =
A124283. prime(4almostprime(n)) - 4almostprime(prime(n)) =
A124284. Primes indexed by 3-almost primes =
A124268. 3-almost primes indexed by primes =
A124269. prime(3almostprime(n)) - 3almostprime(prime(n)) =
A124270. See also
A106349 Primes indexed by semiprimes. See also
A106350 Semiprimes indexed by primes. See also
A122824 Prime(semiprime(n)) - semiprime(prime(n)). Commutator [
A000040,
A001358] at n.
Cf.
A000040,
A001358,
A014612,
A065516,
A114403,
A122824,
A124269,
A124270,
A124282-
A124284,
A124309,
A124310,
A124318,
A124319.
-
p[k_] := Select[Range[1000], PrimeOmega[#] == k &]; p[2][[Take[p[3], 60]]] (* Giovanni Resta, Jun 13 2016 *)
-
from math import isqrt
from sympy import primepi, primerange, integer_nthroot
def A124317(n):
def f(x): return int(x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1)) for b,m in enumerate(primerange(k,isqrt(x//k)+1),a)))
def g(x): return int(x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1)))
m, k = n, f(n)+n
while m != k:
m, k = k, f(k)+n
r, k = m, g(m)+m
while r != k:
r, k = k, g(k)+m
return r # Chai Wah Wu, Aug 17 2024
A124318
3-almost primes indexed by semiprimes.
Original entry on oeis.org
20, 28, 44, 45, 66, 68, 98, 99, 110, 114, 147, 148, 153, 165, 170, 188, 207, 222, 238, 244, 245, 261, 273, 284, 310, 322, 343, 356, 357, 363, 374, 387, 388, 399, 429, 438, 465, 475, 477, 494, 498, 506, 531, 549, 555, 590, 595, 596, 602, 603, 628, 639, 642
Offset: 1
a(1) = 3almostprime(semiprime(1)) = 3almostprime(4 = 2^2) = 20 = 2^2 * 5.
a(2) = 3almostprime(semiprime(2)) = 3almostprime(6 = 2 * 3) = 28 = 2^2 * 7.
a(3) = 3almostprime(semiprime(3)) = 3almostprime(9 = 3^2) = 44 = 2^2 * 11.
a(4) = 3almostprime(semiprime(4)) = 3almostprime(10 = 2 * 5) = 45 = 3^2 * 5.
Cf.
A124317 Semiprimes indexed by 3-almost primes.
A124318 3-almost primes indexed by semiprimes.
A124319 semiprime(3almostprime(n)) - 3almostprime(semiprime(n)).
A124308 Primes indexed by 5-almost primes.
A124309 5-almost primes indexed by primes.
A124310 prime(5almostprime(n)) - 5almostprime(prime(n)). 4-almost primes indexed by primes =
A124283. prime(4almostprime(n)) - 4almostprime(prime(n)) =
A124284. Primes indexed by 3-almost primes =
A124268. 3-almost primes indexed by primes =
A124269. prime(3almostprime(n)) - 3almostprime(prime(n)) =
A124270. See also
A106349 Primes indexed by semiprimes. See also
A106350 Semiprimes indexed by primes. See also
A122824 Prime(semiprime(n)) - semiprime(prime(n)). Commutator [
A000040,
A001358] at n.
Cf.
A000040,
A001358,
A014612,
A065516,
A114403,
A122824,
A124269,
A124270,
A124282-
A124284,
A124309,
A124310,
A124317,
A124319.
-
p[k_] := Select[Range[1000], PrimeOmega[#] == k &]; p[3][[Take[p[2], 60]]] (* Giovanni Resta, Jun 13 2016 *)
-
from math import isqrt
from sympy import primepi, primerange, integer_nthroot
def A124318(n):
def g(x): return int(x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1)) for b,m in enumerate(primerange(k,isqrt(x//k)+1),a)))
def f(x): return int(x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1)))
m, k = n, f(n)+n
while m != k:
m, k = k, f(k)+n
r, k = m, g(m)+m
while r != k:
r, k = k, g(k)+m
return r # Chai Wah Wu, Aug 17 2024
Comments