cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 47 results. Next

A115443 Numbers whose square is the concatenation of two numbers k and k-4.

Original entry on oeis.org

81, 8157, 9801, 467347, 532654, 998001, 76450589, 99980001, 7801738415, 8593817623, 9208120793, 9999800001, 346667333467, 401461854015, 598538145986, 653332666534, 945207479453, 999998000001, 48349470735060
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Examples

			9605_9601 = 9801^2.
		

Crossrefs

A115444 Numbers whose square is the concatenation of two numbers k and k-5.

Original entry on oeis.org

46, 55, 949951, 979654, 7771781679, 7900890080, 9920892100, 9949999501, 38773083432317, 41534158410842, 47433813119408, 52566186880593, 58465841589159, 61226916567684, 72258945037435, 86156896546725
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Examples

			902406_902401 = 949951^2.
		

Crossrefs

A115445 Numbers whose square is the concatenation of two numbers k and k-7.

Original entry on oeis.org

9, 13, 3656545, 4565636, 5434365, 6343456, 3646962589704198389, 6353037410295801612, 9101508044249652935, 7903999111431765764698711045778, 9722180929613583946516892863960
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Examples

			4023943_4023936 = 6343456^2.
		

Crossrefs

A115447 Numbers whose square is the concatenation of two numbers k and k-9.

Original entry on oeis.org

71, 7235, 9701, 798981, 997001, 35324118, 64675883, 99970001, 3297392379, 6702607622, 7890726434, 8812181189, 9999700001, 897807218979, 917811219179, 979998999801, 999997000001, 46193210013657, 49751928874867
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Examples

			638370_638361 = 798981^2.
		

Crossrefs

A092118 Biperiod squares: square numbers whose digits repeat twice in order.

Original entry on oeis.org

1322314049613223140496, 2066115702520661157025, 2975206611629752066116, 4049586776940495867769, 5289256198452892561984, 6694214876166942148761, 8264462810082644628100, 183673469387755102041183673469387755102041
Offset: 1

Views

Author

Michael Mark, Dec 15 2004

Keywords

References

  • Andrew Bridy, Robert J. Lemke Oliver, Arlo Shallit, and Jeffrey Shallit, The Generalized Nagell-Ljunggren Problem: Powers with Repetitive Representations, Experimental Math, 28 (2019), 428-439.
  • R. Ondrejka, Problem 1130: Biperiod Squares, Journal of Recreational Mathematics, Vol. 14:4 (1981-82), 299. Solution by F. H. Kierstead, Jr., JRM, Vol. 15:4 (1982-83), 311-312.

Crossrefs

Programs

  • Maple
    f:=proc(n) local i,j,k; i:=cat(n,n); j:=convert(i,decimal,10); issqr(j); end;
    with(numtheory): Digits:=50:for d from 1 to 22 do tendp1:=10^d+1: tendp1fact:=ifactors(tendp1)[2]: n:=mul(piecewise(tendp1fact[i][2] mod 2=1,tendp1fact[i][1],1),i=1..nops(tendp1fact)):for i from ceil(sqrt((10^(d-1))/n)) to floor(sqrt((10^d-1)/n)) do printf("%d, ",tendp1*n*i^2) od: od: # C. Ronaldo
  • Python
    from itertools import count, islice
    from sympy import sqrt_mod
    def A092118_gen(): # generator of terms
        for j in count(0):
            b = 10**j
            a = b*10+1
            ab, aa = a*b, a*(a-1)
            for k in sorted(sqrt_mod(0,a,all_roots=True)):
                if ab <= (m:=k**2) < aa:
                    yield m
    A092118_list = list(islice(A092118_gen(),10)) # Chai Wah Wu, Mar 06 2024

Extensions

Corrected and extended by C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 15 2005
Definition corrected and improved, reference and cross-reference added by William Rex Marshall, Nov 12 2010
Keyword base added by William Rex Marshall, Nov 12 2010

A115528 Numbers k such that k^2 is the concatenation of two numbers m and 2*m.

Original entry on oeis.org

6, 28571428571428571428572, 42857142857142857142858, 57142857142857142857144, 2247191011235955056179775280898876404494382022471910112360
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Examples

			6^2 = 3_6.
		

Crossrefs

A115549 Numbers k such that the concatenation of k with 8*k gives a square.

Original entry on oeis.org

3, 12, 28, 63, 112, 278, 1112, 2778, 11112, 27778, 111112, 277778, 1111112, 2777778, 4938272, 7716050, 11111112, 12802888, 13151250, 13504288, 13862002, 14224392, 14591458, 14963200, 15339618, 15720712, 16106482, 16496928, 16892050, 17291848, 17696322, 18105472
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Comments

If k = 10*R_m + 2, with m >= 1, then the concatenation of k with 8*k equals (30*R_m + 6)^2, so A047855 \ {1,2} is a subsequence. - Bernard Schott, Apr 09 2022
Numbers k such that A009470(k) is a square. - Michel Marcus, Apr 09 2022
The numbers 28, 278, 2778, ..., 2*10^k + 7*(10^k - 1)/9 + 1, ..., k >= 1, are terms, because the concatenation forms the squares 28224 = 168^2, 2782224 = 1668^2, 277822224 = 16668^2, ..., (10^m + 2*(10^m - 1)/3 + 2)^2, m >= 2, ... - Marius A. Burtea, Apr 10 2022

Examples

			3_24 = 18^2.
11112_88896 = 33336^2.
		

Crossrefs

Programs

  • Magma
    [n:n in [1..20000000]|IsSquare(Seqint(Intseq(8*n) cat Intseq(n)))]; // Marius A. Burtea, Apr 10 2022
  • PARI
    isok(k) = issquare(eval(Str(k, 8*k))); \\ Michel Marcus, Apr 09 2022
    

Extensions

More terms from Marius A. Burtea, Apr 13 2022

A115529 Numbers k such that the concatenation of 2*k with k gives a square.

Original entry on oeis.org

1632653061224489796, 3673469387755102041, 6530612244897959184, 108166576527852893455922120064900, 130881557598702001081665765278529, 155759870200108166576527852893456, 182801514332071389940508382909681
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Comments

Numbers of the form k = a*b^2 where 10^(d-1) <= k < 10^d and (2*10^d+1)/a is a square. - Robert Israel, Jan 13 2021

Examples

			3265306122448979592_1632653061224489796 = 5714285714285714286^2.
		

Crossrefs

Programs

  • Maple
    f:= proc(d) local R,q,F,G,s,t,a,u,i;
       q:= 2*10^d+1;
       F:= ifactors(q)[2];
       G:= map(t -> [t[1],floor(t[2]/2)], F);
       s:= mul(t[1]^t[2],t=G);
       R:= NULL:
       for a in numtheory:-divisors(s) do
         u:= q/a^2;
         R:= R, seq(i^2*u, i=ceil(sqrt(10^(d-1)/u))..floor(sqrt((10^d-1)/u)))
       od;
       R
    end proc:
    seq(f(d),d=1..33); # Robert Israel, Jan 13 2021

A115531 Numbers k such that the concatenation of k with 3*k gives a square.

Original entry on oeis.org

816326530612244897959183673469388, 1836734693877551020408163265306123, 3265306122448979591836734693877552, 3746097814776274713839750260145681581685744016649323621228
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Comments

If 3+10^m is not squarefree, say 3+10^m = u^2*v where v is squarefree, then the terms with length m are t^2*v where 10^m > 3*t^2*v >= 10^(m-1). The first m for which 3+10^m is not squarefree are 34, 59, 60, 61, 67. - Robert Israel, Aug 07 2019
Since 3+10^m is divisible by 7^2 for m = 34 + 42*k, the sequence contains 4*(3+10^m)/49, 9*(3+10^m)/49 and 16*(3+10^m)/49 for such m, and in particular is infinite. - Robert Israel, Aug 08 2019

Crossrefs

Programs

  • Maple
    Res:= NULL:
    for m from 1 to 67 do
    if not numtheory:-issqrfree(3+10^m) then
       F:= select(t -> t[2]=1, ifactors(3+10^m)[2]);
       v:= mul(t[1], t=F);
       Res:= Res, seq(t^2*v, t = ceil(sqrt(10^(m-1)/(3*v))) .. floor(sqrt(10^m/(3*v))))
    fi
    od:
    Res;  # Robert Israel, Aug 07 2019

A115555 Numbers k such that the concatenation of 9*k with k gives a square.

Original entry on oeis.org

1836734693877551020408163265306122449, 7346938775510204081632653061224489796, 15311909262759924385633270321361058601134215500945179584121, 27221172022684310018903591682419659735349716446124763705104
Offset: 1

Views

Author

Giovanni Resta, Jan 25 2006

Keywords

Crossrefs

Previous Showing 11-20 of 47 results. Next