A077782
Numbers k such that (10^k - 1) - 5*10^floor(m/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).
Original entry on oeis.org
29, 45, 73, 209, 2273, 35729, 50897
Offset: 1
29 is a term because (10^29 - 1) - 5*10^14 = 99999999999999499999999999999.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[ If[ PrimeQ[10^n - 5*10^Floor[n/2] - 1], Print[n]], {n, 3, 50900, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
A077784
Numbers k such that (10^k - 1)/3 + 2*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).
Original entry on oeis.org
3, 5, 35, 159, 237, 325, 355, 371, 481, 1649, 3641, 4709, 269623
Offset: 1
5 is a term because (10^5 - 1)/3 + 2*10^2 = 33533.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
Partial sums of S(n, x), for x=1...9:
A021823,
A000217,
A027941,
A061278,
A089817,
A053142,
A092521,
A076765,
A092420.
-
Do[ If[ PrimeQ[(10^n + 6*10^Floor[n/2] - 1)/3], Print[n]], {n, 3, 4800, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
A077785
Odd numbers k such that the palindromic wing number (a.k.a. near-repdigit palindrome) 7*(10^k - 1)/9 - 2*10^((k-1)/2) is prime.
Original entry on oeis.org
3, 15, 27, 117, 259, 507, 3315, 4489, 4875, 15849, 19807, 23799, 36315, 37915, 47331, 211219
Offset: 1
15 is in the sequence because 7*(10^15 - 1)/9 - 2*10^7 = 777777757777777 is prime.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[ If[ PrimeQ[(7*10^n - 18*10^Floor[n/2] - 7)/9], Print[n]], {n, 3, 40000, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
A077786
Numbers k such that (10^k - 1) - 4*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).
Original entry on oeis.org
177, 225, 397, 1245, 8457, 20105, 111725
Offset: 1
177 is a term because (10^177 - 1) - 4*10^88 = 99...99599...99.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[ If[ PrimeQ[10^n - 4*10^Floor[n/2] - 1], Print[n]], {n, 3, 20200, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
A077788
Numbers k such that 7*(10^k - 1)/9 - 10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).
Original entry on oeis.org
9, 11, 17, 23, 2489, 3371, 4019, 29315, 30237, 40665, 101661, 150125
Offset: 1
11 is a term because 7*(10^11 - 1)/9 - 10^5 = 77777677777.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[ If[ PrimeQ[(7*10^n - 9*10^Floor[n/2] - 7)/9], Print[n]], {n, 3, 30300, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
A077789
Numbers k such that (10^k - 1)/9 + 6*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).
Original entry on oeis.org
7, 67, 623, 5867, 44471, 78331, 83171
Offset: 1
7 is a term because (10^7 - 1)/9 + 6*10^3 = 1117111.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[ If[ PrimeQ[(10^n + 54*10^Floor[n/2] - 1)/9], Print[n]], {n, 3, 6000, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
A077790
Numbers k such that (10^k - 1)/3 + 4*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).
Original entry on oeis.org
3, 7, 15, 23, 27, 35, 59, 63, 67, 155, 1867, 3111, 23517, 235415
Offset: 1
23 is a term because (10^23 - 1)/3 + 4*10^11 = 33333333333733333333333.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[ If[ PrimeQ[(10^n + 12*10^Floor[n/2] - 1)/3], Print[n]], {n, 3, 23600, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
A077791
Numbers k such that (10^k - 1)/9 + 7*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).
Original entry on oeis.org
3, 9, 13, 15, 769, 1333, 1351, 6331, 262041
Offset: 1
13 is a term (10^13 - 1)/9 + 7*10^6 = 1111118111111.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[ If[ PrimeQ[(10^n + 63*10^Floor[n/2] - 1)/9], Print[n]], {n, 3, 6400, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
A077792
Numbers k such that (10^k - 1)/3 + 5*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).
Original entry on oeis.org
3, 15, 171, 189, 547, 713, 2155, 3595, 13517, 60465
Offset: 1
15 is a term because (10^15 - 1)/3 + 5*10^7 = 333333383333333.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[ If[ PrimeQ[(10^n + 15*10^Floor[n/2] - 1)/3], Print[n]], {n, 3, 13600, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
A077793
Numbers k such that 7*(10^k - 1)/9 + 10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).
Original entry on oeis.org
3, 7, 79, 109, 337, 481, 10657, 12319, 49351, 104455, 227775
Offset: 1
7 is a term because 7*(10^7 - 1)/9 + 10^3 = 7778777.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[ If[ PrimeQ[(7*10^n + 9*10^Floor[n/2] - 7)/9], Print[n]], {n, 3, 12400, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
Comments