cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 36 results. Next

A139502 Primes of the form x^2 + 22x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

241, 409, 601, 769, 1009, 1129, 1201, 1249, 1321, 1489, 1609, 1801, 2089, 2161, 2281, 2521, 2689, 3001, 3049, 3121, 3169, 3361, 3529, 3769, 3889, 4129, 4201, 4441, 4561, 4729, 4801, 4969, 5209, 5281, 5449, 5521, 5569, 5641, 5689, 5881, 6121, 6361, 6481
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Comments

Also primes of the form x^2 + 120y^2. - T. D. Noe, Apr 29 2008
Also primes of the form x^2+240y^2. See A140633. - T. D. Noe, May 19 2008
In base 12, the sequence is 181, 2X1, 421, 541, 701, 7X1, 841, 881, 921, X41, E21, 1061, 1261, 1301, 13X1, 1561, 1681, 18X1, 1921, 1981, 1X01, 1E41, 2061, 2221, 2301, 2481, 2521, 26X1, 2781, 28X1, 2941, 2X61, 3021, 3081, 31X1, 3241, 3281, 3321, 3361, 34X1, 3661, 3821, 3901, where X is 10 and E is 11. Moreover, the discriminant is 340. - Walter Kehowski, Jun 01 2008

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(7000) | p mod 120 in {1, 49}]; // Vincenzo Librandi, Jul 28 2012
  • Mathematica
    QuadPrimes2[1, 0, 120, 10000] (* see A106856 *)

Formula

The primes are congruent to {1, 49} (mod 120). - T. D. Noe, Apr 29 2008

A139494 Primes of the form x^2 + 11x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

13, 43, 61, 79, 103, 127, 139, 157, 181, 199, 211, 277, 283, 313, 337, 367, 373, 433, 439, 523, 547, 571, 601, 607, 673, 727, 751, 757, 823, 829, 859, 883, 907, 919, 937, 991, 997, 1039, 1063, 1069, 1093, 1117, 1153, 1171, 1213, 1231, 1249, 1291, 1297
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; w = 11; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a] (*Artur Jasinski*)

A139506 Primes of the form x^2 + 26x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

193, 337, 457, 673, 1009, 1033, 1129, 1201, 1297, 1801, 1873, 2017, 2137, 2377, 2473, 2521, 2689, 2713, 2857, 3049, 3217, 3313, 3361, 3529, 3697, 3889, 4057, 4153, 4201, 4561, 4657, 4729, 4993, 5209, 5233, 5569, 5737, 5881, 6073, 6217, 6337, 6553, 6577
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Comments

Also primes of the form x^2 + 168y^2. - T. D. Noe, Apr 29 2008
In base 12, the sequence is 141, 241, 321, 481, 701, 721, 7X1, 841, 901, 1061, 1101, 1201, 12X1, 1461, 1521, 1561, 1681, 16X1, 17X1, 1921, 1X41, 1E01, 1E41, 2061, 2181, 2301, 2421, 24X1, 2521, 2781, 2841, 28X1, 2X81, 3021, 3041, 3281, 33X1, 34X1, 3621, 3721, 3801, 3961, 3981, where X is 10 and E is 11. Moreover, the discriminant is 480. - Walter Kehowski, Jun 01 2008

Crossrefs

Programs

  • Mathematica
    a = {}; w = 26; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a]

Formula

The primes are congruent to {1, 25, 121} (mod 168). - T. D. Noe, Apr 29 2008

A139512 Primes of the form x^2 + 32*x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

229, 349, 409, 421, 661, 769, 829, 1021, 1069, 1249, 1381, 1429, 1549, 1789, 1801, 1861, 2089, 2161, 2269, 2389, 3001, 3061, 3109, 3181, 3229, 3469, 3889, 4021, 4129, 4201, 4441, 4861, 4909, 5101, 5449, 5521, 5869, 5881, 6121, 6469, 6481, 6529, 6781
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Comments

Are all terms == 1 mod 12? - Zak Seidov, Apr 25 2008
Yes: (i) all terms == 1 mod 3 because the quadratic form has terms == {0,1} mod 3 and the values ==0 mod 3 are not primes. (ii) all terms == 1 mod 4 because the quadratic form has terms == {0,1,2} mod 4 and the values = {0,2} mod 4 are not primes. By the Chinese remainder constructions for coprime 3 and 4 all prime terms are == 1 mod 12. - R. J. Mathar, Jun 10 2020

Crossrefs

Programs

  • Mathematica
    a = {}; w = 32; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a] (*Artur Jasinski*)

A243189 Nonnegative numbers of the form 2x^2 + 6xy - 3y^2.

Original entry on oeis.org

0, 2, 5, 8, 17, 18, 20, 32, 33, 42, 45, 50, 53, 68, 72, 77, 80, 98, 105, 113, 122, 125, 128, 132, 137, 153, 162, 168, 170, 173, 177, 180, 197, 200, 212, 213, 218, 233, 242, 245, 257, 258, 272, 288, 293, 297, 305, 308, 317, 320, 330, 338, 353, 357, 362, 378
Offset: 1

Views

Author

N. J. A. Sloane, Jun 05 2014

Keywords

Comments

Discriminant 60.
Nonnegative numbers of the form 5x^2 - 3y^2. - Jon E. Schoenfield, Jun 03 2022
From Klaus Purath, Jul 26 2023: (Start)
Nonnegative integers k such that 3x^2 - 5y^2 + k = 0 has integer solutions.
Also nonnegative integers of the form 2x^2 + (4m+2)xy + (2m^2+2m-7)y^2 for integers m. This includes the form in the name with m = 1.
Also nonnegative integers of the form 5x^2 + 10mxy + (5m^2-3)y^2 for integers m. This includes the form from Jon E. Schoenfield above with m = 0.
There are no squares in this sequence. Even powers of terms as well as products of an even number of terms belong to A243188.
Odd powers of terms as well as products of an odd number of terms belong to the sequence. This can be proved with respect to the form 5x^2 - 3y^2 by the following identity: (na^2 - kb^2)(nc^2 - kd^2)(ne^2 - kf^2) = n[a(nce + kdf) + bk(cf + de)]^2 - k[na(cf + de) + b(nce + kdf)]^2 for all a, b, c, d, e, f, k, n in R. This can be verified by expanding both sides of the equation.
(End)

Crossrefs

Programs

  • Mathematica
    Reap[For[n = 0, n <= 200, n++, If[Reduce[2*x^2 + 6*x*y - 3*y^2 == n, {x, y}, Integers] =!= False, Sow[n]]]][[2, 1]]

Extensions

0 prepended and more terms from Colin Barker, Apr 07 2015

A243190 Nonnegative numbers of the form -2x^2+6xy+3y^2.

Original entry on oeis.org

0, 3, 7, 12, 22, 27, 28, 30, 43, 48, 55, 63, 67, 70, 75, 88, 102, 103, 108, 112, 118, 120, 127, 142, 147, 163, 172, 175, 183, 187, 192, 198, 220, 223, 238, 243, 252, 255, 262, 268, 270, 280, 283, 295, 300, 307, 318, 327, 343, 352, 355, 358, 363, 367, 382
Offset: 1

Views

Author

N. J. A. Sloane, Jun 05 2014

Keywords

Comments

Discriminant 60.
Also: nonnegative 3x^2-5y^2 since 3y^2+6xy-2x^2 = 3(y+x)^2-5x^2. - R. J. Mathar, Jun 10 2020

Crossrefs

Programs

  • Mathematica
    Reap[For[n = 0, n <= 200, n++, If[Reduce[-2*x^2 + 6*x*y + 3*y^2 == n, {x, y}, Integers] =!= False, Sow[n]]]][[2, 1]]

Extensions

0 prepended and more terms from Colin Barker, Apr 07 2015

A139505 Primes of the form x^2 + 25x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

151, 163, 307, 397, 409, 541, 547, 601, 673, 811, 823, 859, 967, 997, 1153, 1231, 1237, 1327, 1567, 1669, 1741, 1879, 2083, 2143, 2281, 2293, 2557, 2677, 2707, 2833, 2971, 3037, 3259, 3313, 3433, 3877, 4003, 4129, 4153, 4603, 4639, 4861, 4957, 5101, 5227
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a = {}; w = 25; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a] (*Artur Jasinski*)
    With[{nn=80},Select[Union[#[[1]]^2+25#[[1]]#[[2]]+#[[2]]^2&/@Tuples[ Range[ 0,nn],2]],PrimeQ[#]&&#Harvey P. Dale, Feb 10 2020 *)

A141750 Primes of the form 4*x^2 + 3*x*y - 4*y^2 (as well as of the form 2*x^2 + 9*x*y + y^2).

Original entry on oeis.org

2, 3, 19, 23, 37, 41, 61, 67, 71, 73, 79, 89, 97, 109, 127, 137, 149, 173, 181, 211, 223, 227, 251, 257, 269, 283, 293, 311, 317, 347, 349, 353, 359, 367, 373, 383, 389, 397, 401, 419, 439, 457, 461, 463, 479, 487, 499, 503, 509, 523, 547, 557, 587, 593, 607
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jul 03 2008

Keywords

Comments

Discriminant = 73. Class = 1. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2-4ac.
Is this the same as A038957? - R. J. Mathar, Jul 04 2008. Answer: almost certainly - see the Tunnell notes in A033212. - N. J. A. Sloane, Oct 18 2014

Examples

			a(2) = 3 because we can write 3 = 4*1^2 + 3*1*1 - 4*1^2.
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

See also A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141158 (d=20). A141159, A141160 (d=21). A141170, A141171 (d=24). A141172, A141173 (d=28). A141174, A141175 (d=32). A141176, A141177 (d=33). A141178 (d=37). A141179, A141180 (d=40). A141181 (d=41). A141182, A141183 (d=44). A033212, A141785 (d=45). A068228, A141187 (d=48). A141188 (d=52). A141189 (d=53). A141190, A141191 (d=56). A141192, A141193 (d=57). A107152, A141302, A141303, A141304 (d=60). A141215 (d=61). A141111, A141112 (d=65). A141161, A141163 (d=148). A141165, A141166 (d=229). A141167, A141168 (d=257).

A141772 Primes of the form 3*x^2 + 5*x*y - 5*y^2 (as well as of the form 7*x^2 + 13*x*y + 3*y^2).

Original entry on oeis.org

3, 5, 7, 17, 23, 37, 73, 97, 107, 113, 163, 167, 173, 193, 197, 227, 233, 277, 283, 313, 317, 337, 347, 367, 397, 487, 503, 547, 607, 617, 643, 653, 673, 677, 683, 743, 787, 823, 827, 853, 857, 877, 887, 907, 947, 983, 997, 1013, 1093, 1117, 1153, 1163, 1187
Offset: 1

Views

Author

Laura Caballero Fernandez, Lourdes Calvo Moguer, Maria Josefa Cano Marquez, Oscar Jesus Falcon Ganfornina and Sergio Garrido Morales (sergarmor(AT)yahoo.es), Jul 04 2008

Keywords

Comments

Discriminant = 85. Class = 2. Binary quadratic forms a*x^2 + b*x*y + c*y^2 have discriminant d = b^2 - 4ac.

Examples

			a(1) = 3 because we can write 3 = 3*1^2 + 5*1*0 - 5*0^2 (or 3 = 7*0^2 + 13*0*1 + 3*1^2).
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.

Crossrefs

Cf. A141773 (d=85). See also A038872 (d=5). A038873 (d=8). A068228, A141123 (d=12). A038883 (d=13). A038889 (d=17). A141158 (d=20). A141159, A141160 (d=21). A141170, A141171 (d=24). A141172, A141173 (d=28). A141174, A141175 (d=32). A141176, A141177 (d=33). A141178 (d=37). A141179, A141180 (d=40). A141181 (d=41). A141182, A141183 (d=44). A033212, A141785 (d=45). A068228, A141187 (d=48). A141188 (d=52). A141189 (d=53). A141190, A141191 (d=56). A141192, A141193 (d=57). A107152, A141302, A141303, A141304 (d=60). A141215 (d=61). A141111, A141112 (d=65). A141750 (d=73). A141161, A141163 (d=148). A141165, A141166 (d=229). A141167, A141168 (d=257).

Extensions

More terms from Colin Barker, Apr 04 2015
Typo in crossrefs fixed by Colin Barker, Apr 05 2015

A107168 Primes of the form 4x^2 + 15y^2.

Original entry on oeis.org

19, 31, 79, 139, 151, 199, 211, 271, 331, 379, 439, 499, 571, 619, 631, 691, 739, 751, 811, 859, 919, 991, 1039, 1051, 1171, 1231, 1279, 1291, 1399, 1459, 1471, 1531, 1579, 1699, 1759, 1831, 1879, 1951, 1999, 2011, 2131, 2179, 2239, 2251, 2311
Offset: 1

Views

Author

T. D. Noe, May 13 2005

Keywords

Comments

Discriminant = -240. See A107132 for more information.
Also, primes of form u^2+15v^2 where v is odd (and u is necessarily even), while A107152 (which can also be expressed as x^2+60y^2) has even v. The former is {19,31} mod 60 and the latter is {1,49} mod 60, but both can be reduced to the common congruence {1,19} mod 30. - Tito Piezas III, Jan 01 2009

Crossrefs

Cf. A139827.

Programs

  • Magma
    [p: p in PrimesUpTo(3000) | p mod 60 in [19, 31]]; // Vincenzo Librandi, Jul 25 2012
    
  • Mathematica
    QuadPrimes2[4, 0, 15, 10000] (* see A106856 *)
  • PARI
    list(lim)=my(v=List(),t); forprime(p=19,lim, t=p%60; if(t==19||t==31, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Feb 10 2017

Formula

The primes are congruent to {19, 31} (mod 60). - T. D. Noe, May 02 2008
Previous Showing 11-20 of 36 results. Next