cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A307606 G.f. A(x) satisfies: A(x) = ((1 + x)/(1 - x)) * A(x^2)^2*A(x^3)^3*A(x^4)^4* ... *A(x^k)^k* ...

Original entry on oeis.org

1, 2, 6, 16, 46, 104, 268, 596, 1406, 3060, 6812, 14356, 30948, 63660, 132328, 267164, 541678, 1072000, 2127052, 4140340, 8060588, 15458948, 29602504, 55990780, 105693252, 197422424, 367793952, 679206200, 1250557768, 2284986580, 4162202864, 7530956532, 13583095710
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 18 2019

Keywords

Comments

Convolution of A307604 and A307605.

Examples

			G.f.: A(x) = 1 + 2*x + 6*x^2 + 16*x^3 + 46*x^4 + 104*x^5 + 268*x^6 + 596*x^7 + 1406*x^8 + 3060*x^9 + ...
		

Crossrefs

Programs

  • Mathematica
    terms = 32; A[] = 1; Do[A[x] = (1 + x)/(1 - x) Product[A[x^k]^k, {k, 2, terms}] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x]

Formula

G.f.: Product_{k>=1} ((1 + x^k)/(1 - x^k))^(k*A074206(k)).
a(n) ~ ((1 - 2^(2+r)) * Gamma(2+r) * zeta(2+r))^(1/(50*(2+r))) * exp(12/625 + 2^(1/(2+r) - 1) * (2+r) * ((1 - 2^(2+r)) * Gamma(2+r) * zeta(2+r))^(1/(2+r)) / (zeta'(r)^(1/(2+r)) * (1+r)) * n^((1+r)/(2+r))) / (A^(144/625) * 2^((3 + 2*r)/(50*(2 + r))) * zeta'(r)^(1/(50*(2+r))) * sqrt(Pi*(2+r)) * n^(1/2 + 1/(50*(2+r)))), where r = A107311 is the root of the equation zeta(r)=2 and A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Mar 18 2021

A318767 G.f. satisfies: A(x) = (1+x)/(1-x) * A(x^2)*A(x^3)*A(x^4)*...*A(x^n)*... .

Original entry on oeis.org

1, 2, 4, 8, 16, 28, 52, 88, 152, 252, 416, 664, 1076, 1684, 2636, 4060, 6248, 9444, 14292, 21312, 31748, 46796, 68804, 100200, 145784, 210240, 302520, 432428, 616716, 873972, 1236136, 1738560, 2439936, 3407924, 4749160, 6589156, 9123976, 12582620, 17316052, 23745756
Offset: 0

Views

Author

Seiichi Manyama, Nov 04 2018

Keywords

Comments

Convolution of A129373 and A129374. - Vaclav Kotesovec, Nov 05 2018

Crossrefs

Formula

G.f.: Product_{k>=1} ((1 + x^k)/(1 - x^k))^A074206(k) where A074206(n) is the number of ordered factorizations of n.
a(n) ~ exp((1+r) * ((2^(1+r) - 1) * Gamma(1+r) * Zeta(1+r))^(1/(1+r)) * n^(r/(1+r)) / (r * 2^(r/(1+r)) * (-Zeta'(r))^(1/(1+r)))) * (-2*(2^(1+r) - 1) * Gamma(1+r) * Zeta(1+r) / Zeta'(r))^(1/(10*(1+r))) / (2^(7/25) * Pi^(29/50) * sqrt(1+r) * n^((6+5*r)/(10*(1+r)))), where r = A107311 = 1.7286472389981836181351... is the root of the equation Zeta(r) = 2, Zeta'(r) = -1/A247667. - Vaclav Kotesovec, Nov 05 2018

A307615 E.g.f. A(x) satisfies: A(x) = exp(x) * A(x^2)^2*A(x^3)^3*A(x^4)^4* ... *A(x^k)^k* ...

Original entry on oeis.org

1, 1, 5, 31, 337, 2741, 40621, 474475, 8461601, 132034537, 2648537461, 50079699671, 1204884343345, 26450428964701, 697107087763997, 17873985363570211, 526080367468142401, 15060611189639187665, 487251625325328212581, 15494976568071805188367, 545902629556769672596241
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 18 2019

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 5*x^2/2! + 31*x^3/3! + 337*x^4/4! + 2741*x^5/5! + 40621*x^6/6! + 474475*x^7/7! + 8461601*x^8/8! + 132034537*x^9/9! + ...
		

Crossrefs

Programs

  • Mathematica
    terms = 20; A[] = 1; Do[A[x] = Exp[x] Product[A[x^k]^k, {k, 2, terms}] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x] Range[0, terms]!

Formula

E.g.f.: exp(Sum_{k>=1} A050369(k)*x^k).
a(0) = 1; a(n) = Sum_{k=1..n} A074206(k)*k*k!*binomial(n-1,k-1)*a(n-k).
a(n) ~ (-Gamma(2+r)/zeta'(r))^(1/(4 + 2*r)) * exp(-n + 12/25 + n^(1 - 1/(2+r)) * (2+r) * (-Gamma(2+r)/zeta'(r))^(1/(2+r)) / (1+r)) * n^(n - 1/(4 + 2*r)) / sqrt(2+r), where r = A107311 = 1.7286472389981836181351... is the root of the equation Zeta(r) = 2, Zeta'(r) = -1/A247667. - Vaclav Kotesovec, Aug 09 2021

A247668 Decimal expansion of the coefficient c_v in c_v*log(N), the asymptotic variance of the number of factors in a random factorization of n <= N.

Original entry on oeis.org

3, 0, 8, 4, 0, 3, 4, 4, 4, 6, 0, 8, 0, 7, 7, 0, 0, 1, 6, 3, 3, 6, 0, 7, 7, 2, 6, 1, 7, 4, 5, 8, 7, 9, 8, 6, 6, 7, 2, 0, 9, 4, 9, 6, 0, 5, 3, 6, 8, 8, 6, 0, 8, 4, 9, 6, 7, 2, 6, 4, 7, 6, 9, 9, 9, 8, 4, 0, 0, 0, 9, 3, 6, 0, 2, 2, 0, 0, 9, 2, 3, 6, 6, 4, 9, 5, 3, 8, 3, 2, 1, 5, 8, 1, 3, 5, 1, 9, 0, 0, 6, 7
Offset: 0

Views

Author

Jean-François Alcover, Sep 22 2014

Keywords

Examples

			0.308403444608077001633607726174587986672094960536886...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.5. Kalmár’s Composition Constant, p. 293.

Crossrefs

Programs

  • Mathematica
    digits = 102; rho = x /. FindRoot[Zeta[x] == 2, {x, 2}, WorkingPrecision -> digits+5]; cv = (-1/Zeta'[rho])*(Zeta''[rho]/Zeta'[rho]^2 - 1); RealDigits[cv, 10, digits] // First

Formula

c_v = (-1/zeta'(rho))*(zeta''(rho)/zeta'(rho)^2 - 1), where rho = 1.728647... is A107311, the real solution to zeta(rho) = 2.

A329110 Number of integer sequences 1 <= b_1 < b_2 < ... < b_t <= n such that b_i divides b_(i+1) for all 0 < i < t.

Original entry on oeis.org

1, 3, 5, 9, 11, 17, 19, 27, 31, 37, 39, 55, 57, 63, 69, 85, 87, 103, 105, 121, 127, 133, 135, 175, 179, 185, 193, 209, 211, 237, 239, 271, 277, 283, 289, 341, 343, 349, 355, 395, 397, 423, 425, 441, 457, 463, 465, 561, 565, 581, 587, 603, 605, 645, 651, 691
Offset: 1

Views

Author

Peter Kagey, Nov 04 2019

Keywords

Comments

Cumulative sum of A067824.

Examples

			For n = 4 the a(4) = 9 sequences are 1; 1, 2; 1, 2, 4; 1, 3; 1, 4; 2; 2, 4; 3; and 4.
		

Crossrefs

Cf. A067824.

Programs

  • PARI
    s=0; for (n=1, #(z=vector(56)), print1 (s += z[n]=1+sumdiv(n, k, if (kRémy Sigrist, Nov 08 2019

Formula

From Vaclav Kotesovec, Mar 18 2021: (Start)
a(n) ~ -2*n^r/(r*zeta'(r)), where r=A107311 is the root of the equation zeta(r)=2.
a(n) ~ 2*A247667 * n^A107311 / A107311.
a(n) ~ 2*A217598 * n^A107311. (End)

A335494 Decimal expansion of s, where s is the root of Product_{k>=1} zeta(k*s) = 2.

Original entry on oeis.org

1, 8, 8, 6, 8, 6, 9, 1, 4, 9, 8, 7, 7, 7, 0, 2, 8, 1, 8, 4, 7, 2, 1, 1, 6, 0, 4, 0, 5, 7, 5, 0, 8, 2, 9, 8, 5, 4, 8, 1, 7, 3, 6, 8, 9, 3, 5, 5, 4, 3, 7, 3, 0, 8, 2, 1, 6, 3, 3, 7, 5, 6, 6, 7, 1, 7, 6, 6, 4, 5, 9, 5, 5, 9, 6, 4, 7, 0, 8, 6, 5, 6, 4, 4, 7, 4, 6, 3, 0, 8, 4, 7, 9, 9, 1, 5, 6, 3, 6, 5, 2, 5, 6, 1, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Jun 11 2020

Keywords

Examples

			1.8868691498777028184721160405750829854817368935543730821633756671766...
		

Crossrefs

A342203 Decimal expansion of solution to zeta(x) = e.

Original entry on oeis.org

1, 4, 7, 4, 4, 6, 4, 2, 8, 7, 3, 1, 9, 3, 7, 0, 1, 9, 7, 8, 7, 2, 3, 0, 4, 1, 0, 1, 1, 7, 7, 6, 1, 7, 4, 1, 8, 0, 3, 0, 6, 4, 4, 1, 0, 8, 4, 1, 0, 7, 8, 4, 9, 8, 1, 2, 7, 5, 0, 2, 8, 5, 7, 8, 1, 9, 0, 2, 4, 7, 2, 2, 5, 6, 9, 9, 5, 6, 0, 6, 5, 6, 9, 6, 6, 6, 0, 4, 6, 9, 7, 1, 6, 0, 6, 6, 1, 3, 5, 0, 9, 1, 5
Offset: 1

Views

Author

Koksal Karakus, Mar 04 2021

Keywords

Examples

			zeta(1.4744642873...) = e.
		

Crossrefs

Cf. A001113 (e), A107311.

Programs

  • Mathematica
    RealDigits[x /. FindRoot[Zeta[x] == E, {x, 2}, WorkingPrecision -> 105], 10, 100][[1]] (* Amiram Eldar, Mar 05 2021 *)
  • PARI
    solve(x=1.1, 2, zeta(x)-exp(1)) \\ Michel Marcus, Mar 05 2021

Extensions

More digits from Alois P. Heinz, Mar 05 2021

A247605 Decimal expansion of the coefficient c_md in c_md*log(N)^(1/rho), the asymptotic mean number of distinct factors in a random factorization of n <= N.

Original entry on oeis.org

1, 4, 8, 7, 9, 1, 5, 9, 7, 1, 6, 7, 8, 1, 5, 7, 8, 9, 2, 8, 7, 1, 6, 8, 6, 3, 0, 5, 4, 6, 5, 5, 6, 6, 0, 7, 2, 7, 9, 1, 9, 8, 8, 4, 9, 0, 4, 5, 2, 7, 1, 7, 9, 1, 8, 9, 7, 1, 1, 1, 7, 9, 7, 4, 5, 3, 8, 5, 7, 8, 5, 4, 4, 4, 6, 2, 5, 3, 5, 4, 3, 5, 6, 8, 6, 5, 8, 9, 2, 4, 8, 7, 1, 6, 6, 3, 7, 1, 2, 2, 8
Offset: 1

Views

Author

Jean-François Alcover, Sep 22 2014

Keywords

Examples

			1.48791597167815789287168630546556607279198849...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.5. Kalmár’s Composition Constant, p. 293.

Crossrefs

Programs

  • Mathematica
    digits = 101; rho = x /. FindRoot[Zeta[x] == 2, {x, 2}, WorkingPrecision -> digits + 5]; cmd = (-1/rho)*Gamma[-1/rho]*(-1/Zeta'[rho])^(1/rho); RealDigits[cmd, 10, digits] // First

Formula

c_md = (-1/rho)*Gamma(-1/rho)*(-1/zeta'(rho))^(1/rho), where rho = 1.728647... is A107311, the real solution to zeta(rho) = 2.

A342220 Decimal expansion of solution to zeta(x) = Pi.

Original entry on oeis.org

1, 3, 9, 4, 2, 5, 3, 2, 1, 9, 8, 4, 4, 8, 8, 8, 3, 9, 4, 6, 0, 0, 9, 8, 9, 8, 9, 8, 4, 9, 6, 3, 4, 5, 2, 9, 8, 9, 1, 8, 3, 8, 2, 4, 0, 2, 3, 9, 3, 0, 5, 2, 8, 1, 4, 0, 1, 1, 3, 0, 2, 6, 0, 0, 6, 4, 0, 0, 6, 8, 8, 4, 9, 9, 8, 8, 1, 4, 8, 4, 8, 0, 9, 3, 2, 3, 8, 3, 6, 8, 4, 6, 3, 7, 9, 7, 3, 5, 8, 6, 9, 0, 2, 6, 5
Offset: 1

Views

Author

Koksal Karakus, Mar 05 2021

Keywords

Examples

			zeta(1.39425321984488839...) = Pi.
		

Crossrefs

Cf. A000796 (Pi), A107311, A342203.

Programs

  • Mathematica
    RealDigits[x /. FindRoot[Zeta[x] - Pi, {x, 2}, WorkingPrecision -> 120], 10, 100][[1]] (* Amiram Eldar, May 31 2021 *)
  • PARI
    solve(x=1.1, 2, zeta(x) - Pi) \\ Michel Marcus, Mar 07 2021

Extensions

More terms from Jon E. Schoenfield, Mar 07 2021

A349604 Decimal expansion of the positive real solution to (1 - 1/2^x) * zeta(x) = 2.

Original entry on oeis.org

1, 3, 7, 7, 7, 8, 5, 1, 6, 9, 8, 3, 7, 5, 4, 1, 1, 8, 3, 8, 4, 0, 8, 9, 4, 9, 0, 3, 7, 0, 8, 6, 9, 1, 3, 7, 9, 1, 6, 4, 6, 4, 0, 1, 6, 6, 3, 8, 6, 8, 3, 5, 9, 6, 1, 4, 8, 7, 5, 6, 6, 1, 5, 9, 2, 1, 6, 4, 6, 8, 4, 7, 8, 4, 8, 1, 2, 6, 2, 2, 9, 6, 5, 2, 4, 4, 1, 1, 8, 7, 8, 8, 0, 7, 7, 3, 4, 8, 3, 0, 1, 0, 8, 5, 3
Offset: 1

Views

Author

Amiram Eldar, Nov 23 2021

Keywords

Comments

This constant, c, appears in the inequality A074206(n) <= n^c for odd n (Baustian and Bobkov, 2020).

Examples

			1.37778516983754118384089490370869137916464016638683...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[s /. FindRoot[(1 - 1/2^s)*Zeta[s] == 2, {s, 2}, WorkingPrecision -> 110], 10, 100][[1]]
  • PARI
    solve(x=1.1, 2, (1-1/2^x)*zeta(x) - 2) \\ Michel Marcus, Nov 23 2021
Previous Showing 11-20 of 21 results. Next