cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A355561 Number of n-tuples (p_1, p_2, ..., p_n) of positive integers such that p_{i-1} <= p_i <= n^(i-1).

Original entry on oeis.org

1, 1, 2, 24, 3236, 7173370, 330736663032, 382149784071841422, 12983632019302863224103688, 14912674110246473369128526689667934, 654972005961623890774153743504185499487372010, 1228018869478731662593970252736815943512232438560622483276
Offset: 0

Views

Author

Alois P. Heinz, Jul 06 2022

Keywords

Examples

			a(0) = 1: ( ).
a(1) = 1: (1).
a(2) = 2: (1,1), (1,2).
a(3) = 24: (1,1,1), (1,1,2), (1,1,3), (1,1,4), (1,1,5), (1,1,6), (1,1,7), (1,1,8), (1,1,9), (1,2,2), (1,2,3), (1,2,4), (1,2,5), (1,2,6), (1,2,7), (1,2,8), (1,2,9), (1,3,3), (1,3,4), (1,3,5), (1,3,6), (1,3,7), (1,3,8), (1,3,9).
		

Crossrefs

Main diagonal of A355576.

Programs

  • Maple
    b:= proc(n, k, i) option remember; `if`(n=0, 1,
          add(b(n-1, k, j), j=1..min(i, k^(n-1))))
        end:
    a:= n-> b(n$2, infinity):
    seq(a(n), n=0..6);
    # second Maple program:
    b:= proc(n, k) option remember; `if`(n=0, 1, -add(
          b(j, k)*(-1)^(n-j)*binomial(k^j, n-j), j=0..n-1))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..12);

A105996 A050030(2^n+1).

Original entry on oeis.org

1, 2, 4, 11, 41, 222, 1761, 21064, 386241, 11044282, 500411824, 36427700084, 4313893200131, 840463941752366, 272080763704257502, 147646989859379243894, 135364497363933610026002
Offset: 0

Views

Author

Max Alekseyev, May 22 2005

Keywords

Crossrefs

Cf. A107354.

Extensions

Reference to a dead duplicated sequence changed to an existing one by Antti Karttunen, Aug 25 2006

A136503 Column 2 of triangle A136502.

Original entry on oeis.org

1, -4, 26, -308, 6959, -306888, 26732904, -4628215312, 1597488685120, -1101039613155676, 1516536435306750724, -4175994577753360618608, 22993788379965461938093352, -253190775338116964702467771168
Offset: 0

Views

Author

Paul D. Hanna, Jan 01 2008

Keywords

Crossrefs

Cf. A107354 (column 0 of A136502).

Programs

  • PARI
    {a(n)=local(M=matrix(n+3,n+3,r,c,binomial(2^(c-1),r-c)));(M^-1)[n+3,3]}

Formula

G.f.: 1 = Sum_{n>=0} a(n)*x^n*(1+x)^(2^(n+2)).
Previous Showing 11-13 of 13 results.